publication . Preprint . Article . Other literature type . 2019

2HDME: Two-Higgs-Doublet Model Evolver

Oredsson, Joel;
Open Access English
  • Published: 01 Jun 2019
Abstract
Comment: 24 pages, 1 figure
Subjects
arXiv: High Energy Physics::Phenomenology
free text keywords: High Energy Physics - Phenomenology, Hardware and Architecture, General Physics and Astronomy
Related Organizations
Funded by
EC| MorePheno
Project
MorePheno
Collider Phenomenology and Event Generators
  • Funder: European Commission (EC)
  • Project Code: 668679
  • Funding stream: H2020 | ERC | ERC-ADG
24 references, page 1 of 2

[1] G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher, et. al., Theory and phenomenology of two-Higgs-doublet models, Phys.Rept. 516 (2012) 1{102, [arXiv:1106.0034].

[2] J.Oredsson, 2 Higgs Doublet Model Evolver, https://github.com/jojelen/2HDME.

[3] J. Oredsson and J. Rathsman, Z2 breaking e ects in 2-loop RG evolution of 2HDM, arXiv:1810.02588.

[4] M. G. et.al., GNU Scienti c Library Reference Manual (3rd Ed.), ISBN 0954612078 [http://www.gnu.org/software/gsl/].

[5] G. Guennebaud, B. Jacob, et. al., \Eigen v3." http://eigen.tuxfamily.org, 2010.

[6] D. Eriksson, J. Rathsman, and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189{205, [arXiv:0902.0851].

[7] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B222 (1983) 83{103.

[8] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B236 (1984) 221{232.

[9] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B249 (1985) 70{92.

[10] M.-x. Luo, H.-w. Wang, and Y. Xiao, Two loop renormalization group equations in general gauge eld theories, Phys. Rev. D67 (2003) 065019, [hep-ph/0211440].

[11] A. V. Bednyakov, On Three-loop RGE for the Higgs Sector of 2HDM, arXiv:1809.04527.

[12] I. Schienbein, F. Staub, T. Steudtner, and K. Svirina, Revisiting RGEs for general gauge theories, arXiv:1809.06797.

[13] J. Bijnens, J. Oredsson, and J. Rathsman, Scalar Kinetic Mixing and the Renormalization Group, arXiv:1810.04483.

[14] S. Davidson and H. E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D72 (2005) 035004, [hep-ph/0504050]. [Erratum: Phys. Rev.D72,099902(2005)].

[15] H. E. Haber and D. O'Neil, Basis-independent methods for the two-Higgs-doublet model. II. The Signi cance of tan , Phys. Rev. D74 (2006) 015018, [hep-ph/0602242]. [Erratum: Phys. Rev.D74,no.5,059905(2006)].

24 references, page 1 of 2
Abstract
Comment: 24 pages, 1 figure
Subjects
arXiv: High Energy Physics::Phenomenology
free text keywords: High Energy Physics - Phenomenology, Hardware and Architecture, General Physics and Astronomy
Related Organizations
Funded by
EC| MorePheno
Project
MorePheno
Collider Phenomenology and Event Generators
  • Funder: European Commission (EC)
  • Project Code: 668679
  • Funding stream: H2020 | ERC | ERC-ADG
24 references, page 1 of 2

[1] G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher, et. al., Theory and phenomenology of two-Higgs-doublet models, Phys.Rept. 516 (2012) 1{102, [arXiv:1106.0034].

[2] J.Oredsson, 2 Higgs Doublet Model Evolver, https://github.com/jojelen/2HDME.

[3] J. Oredsson and J. Rathsman, Z2 breaking e ects in 2-loop RG evolution of 2HDM, arXiv:1810.02588.

[4] M. G. et.al., GNU Scienti c Library Reference Manual (3rd Ed.), ISBN 0954612078 [http://www.gnu.org/software/gsl/].

[5] G. Guennebaud, B. Jacob, et. al., \Eigen v3." http://eigen.tuxfamily.org, 2010.

[6] D. Eriksson, J. Rathsman, and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189{205, [arXiv:0902.0851].

[7] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B222 (1983) 83{103.

[8] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B236 (1984) 221{232.

[9] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B249 (1985) 70{92.

[10] M.-x. Luo, H.-w. Wang, and Y. Xiao, Two loop renormalization group equations in general gauge eld theories, Phys. Rev. D67 (2003) 065019, [hep-ph/0211440].

[11] A. V. Bednyakov, On Three-loop RGE for the Higgs Sector of 2HDM, arXiv:1809.04527.

[12] I. Schienbein, F. Staub, T. Steudtner, and K. Svirina, Revisiting RGEs for general gauge theories, arXiv:1809.06797.

[13] J. Bijnens, J. Oredsson, and J. Rathsman, Scalar Kinetic Mixing and the Renormalization Group, arXiv:1810.04483.

[14] S. Davidson and H. E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D72 (2005) 035004, [hep-ph/0504050]. [Erratum: Phys. Rev.D72,099902(2005)].

[15] H. E. Haber and D. O'Neil, Basis-independent methods for the two-Higgs-doublet model. II. The Signi cance of tan , Phys. Rev. D74 (2006) 015018, [hep-ph/0602242]. [Erratum: Phys. Rev.D74,no.5,059905(2006)].

24 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue