publication . Article . 2013

Ubiquitination in plant nutrient utilization

Yates, Gary; Sadanandom, Ari;
Closed Access English
  • Published: 12 Nov 2013
  • Country: United Kingdom
Abstract
Ubiquitin (Ub) is well-established as a major modifier of signaling in eukaryotes. However, the extent to which plants rely on Ub for regulating nutrient uptake is still in its infancy. The main characteristic of ubiquitination is the conjugation of Ub onto lysine residues of acceptor proteins. In most cases the targeted protein is rapidly degraded by the 26S proteasome, the major proteolysis machinery in eukaryotic cells. The Ub-proteasome system is responsible for removing most abnormal peptides and short-lived cellular regulators, which, in turn, control many processes. This allows cells to respond rapidly to intracellular signals and changing environmental c...
Subjects
free text keywords: Signaling., Plant Science, ubiquitin, plants, nutrients, abiotic stress, signaling, signalling, Plant culture, SB1-1110, Perspective Article, Proteolysis, medicine.diagnostic_test, medicine, Transporter, Lysine, Biology, biology.protein, Gene, Intracellular, Proteasome, Botany
Related Organizations
Funded by
EC| SUMORICE
Project
SUMORICE
SUMOrice: Exploiting an emerging protein modification system, SUMOylation to boost rice yield during drought and salt stress
  • Funder: European Commission (EC)
  • Project Code: 310235
  • Funding stream: FP7 | SP2 | ERC
47 references, page 1 of 4

Allen E.Xie Z.Gustafson A. M.Carrington J. C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants.Cell 121 207–221 10.1016/j.cell.2005.04.004 15851028 [OpenAIRE] [PubMed] [DOI]

Barberon M.Zelazny E.Robert S.Conejero G.Curie C.Friml J. (2011). Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc. Natl. Acad. Sci. U.S.A. 108 E450–E458 10.1073/pnas.1100659108 21628566 [OpenAIRE] [PubMed] [DOI]

Bartke T.Pohl C.Pyrowolakis G.Jentsch S. (2004). Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol. Cell 14 801–811 10.1016/j.molcel.2004.05.018 15200957 [OpenAIRE] [PubMed] [DOI]

Briat J. F.Lebrun M. (1999). Plant responses to metal toxicity. C. R. Acad. Sci. III 322 43–54 10.1016/S0764-4469(99)80016-X 10047953 [PubMed] [DOI]

Burkhead J. L.Reynolds K. A. G.Abdel-Ghany S. E.Cohu C. M.Pilon M. (2009). Copper homeostasis. New Phytol. 182 799–816 10.1111/j.1469-8137.200 9.02846.x 19402880 [OpenAIRE] [PubMed] [DOI]

Bustos R.Castrillo G.Linhares F.Puga M. I.Rubio V.Pérez-Pérez J. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 6:e1001102. 10.1371/journal.pgen.1001102 [OpenAIRE] [DOI]

Chen C. C.Chen Y. Y.Tang I. C.Liang H. M.Lai C. C.Chiou J. M. (2011). Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance. Plant Physiol. 156 2225–2234 10.1104/pp.111.178996 21632972 [OpenAIRE] [PubMed] [DOI]

Chiou T. J.Aung K.Lin S. I.Wu C. C.Chiang S. F.Su C. L. (2006). Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18 412–421 10.1105/tpc.105.038943 16387831 [OpenAIRE] [PubMed] [DOI]

Curie C.Briat J. F. (2003). Iron transport and signaling in plants. Annu. Rev. Plant Biol. 54 183–206 10.1146/annurev.arplant.54.031902.135018 14509968 [PubMed] [DOI]

Duncan L. M.Piper S.Dodd R. B.Saville M. K.Sanderson C. M.Luzio J. P. (2006). Lys ine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J. 25 1635–1645 10.1038/sj.emboj.7601056 16601694 [OpenAIRE] [PubMed] [DOI]

Elrouby N.Coupland G. (2010). Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc. Natl. Acad. Sci. U.S.A. 107 17415–17420 10.1073/pnas.1005452107 20855607 [OpenAIRE] [PubMed] [DOI]

Fujii H.Chiou T. J.Lin S. I.Aung K.Zhu J. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15 2038–2043 10.1016/j.cub.2005.10.016 16303564 [OpenAIRE] [PubMed] [DOI]

Geiss-Fridelander R.Melchior F. (2007). Concepts in SUMOylation: a decade on. Nat. Rev. Mol. Cell Biol. 8 947–956 10.1038/nrm2293 18000527 [OpenAIRE] [PubMed] [DOI]

Hartmann-Petersen R.Seeger M.Gordon C. (2003). Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28 26–31 10.1016/S0968-0004(02)00002-6 12517449 [PubMed] [DOI]

Hatfield P. M.Gosink M. M.Carpenter T. B.Vierstra R. D. (1997). The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J. 11 213–226 10.1046/j.1365-313X.1997.11020213.x 9076989 [OpenAIRE] [PubMed] [DOI]

47 references, page 1 of 4
Related research
Abstract
Ubiquitin (Ub) is well-established as a major modifier of signaling in eukaryotes. However, the extent to which plants rely on Ub for regulating nutrient uptake is still in its infancy. The main characteristic of ubiquitination is the conjugation of Ub onto lysine residues of acceptor proteins. In most cases the targeted protein is rapidly degraded by the 26S proteasome, the major proteolysis machinery in eukaryotic cells. The Ub-proteasome system is responsible for removing most abnormal peptides and short-lived cellular regulators, which, in turn, control many processes. This allows cells to respond rapidly to intracellular signals and changing environmental c...
Subjects
free text keywords: Signaling., Plant Science, ubiquitin, plants, nutrients, abiotic stress, signaling, signalling, Plant culture, SB1-1110, Perspective Article, Proteolysis, medicine.diagnostic_test, medicine, Transporter, Lysine, Biology, biology.protein, Gene, Intracellular, Proteasome, Botany
Related Organizations
Funded by
EC| SUMORICE
Project
SUMORICE
SUMOrice: Exploiting an emerging protein modification system, SUMOylation to boost rice yield during drought and salt stress
  • Funder: European Commission (EC)
  • Project Code: 310235
  • Funding stream: FP7 | SP2 | ERC
47 references, page 1 of 4

Allen E.Xie Z.Gustafson A. M.Carrington J. C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants.Cell 121 207–221 10.1016/j.cell.2005.04.004 15851028 [OpenAIRE] [PubMed] [DOI]

Barberon M.Zelazny E.Robert S.Conejero G.Curie C.Friml J. (2011). Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc. Natl. Acad. Sci. U.S.A. 108 E450–E458 10.1073/pnas.1100659108 21628566 [OpenAIRE] [PubMed] [DOI]

Bartke T.Pohl C.Pyrowolakis G.Jentsch S. (2004). Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol. Cell 14 801–811 10.1016/j.molcel.2004.05.018 15200957 [OpenAIRE] [PubMed] [DOI]

Briat J. F.Lebrun M. (1999). Plant responses to metal toxicity. C. R. Acad. Sci. III 322 43–54 10.1016/S0764-4469(99)80016-X 10047953 [PubMed] [DOI]

Burkhead J. L.Reynolds K. A. G.Abdel-Ghany S. E.Cohu C. M.Pilon M. (2009). Copper homeostasis. New Phytol. 182 799–816 10.1111/j.1469-8137.200 9.02846.x 19402880 [OpenAIRE] [PubMed] [DOI]

Bustos R.Castrillo G.Linhares F.Puga M. I.Rubio V.Pérez-Pérez J. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet. 6:e1001102. 10.1371/journal.pgen.1001102 [OpenAIRE] [DOI]

Chen C. C.Chen Y. Y.Tang I. C.Liang H. M.Lai C. C.Chiou J. M. (2011). Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance. Plant Physiol. 156 2225–2234 10.1104/pp.111.178996 21632972 [OpenAIRE] [PubMed] [DOI]

Chiou T. J.Aung K.Lin S. I.Wu C. C.Chiang S. F.Su C. L. (2006). Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18 412–421 10.1105/tpc.105.038943 16387831 [OpenAIRE] [PubMed] [DOI]

Curie C.Briat J. F. (2003). Iron transport and signaling in plants. Annu. Rev. Plant Biol. 54 183–206 10.1146/annurev.arplant.54.031902.135018 14509968 [PubMed] [DOI]

Duncan L. M.Piper S.Dodd R. B.Saville M. K.Sanderson C. M.Luzio J. P. (2006). Lys ine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J. 25 1635–1645 10.1038/sj.emboj.7601056 16601694 [OpenAIRE] [PubMed] [DOI]

Elrouby N.Coupland G. (2010). Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes. Proc. Natl. Acad. Sci. U.S.A. 107 17415–17420 10.1073/pnas.1005452107 20855607 [OpenAIRE] [PubMed] [DOI]

Fujii H.Chiou T. J.Lin S. I.Aung K.Zhu J. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Curr. Biol. 15 2038–2043 10.1016/j.cub.2005.10.016 16303564 [OpenAIRE] [PubMed] [DOI]

Geiss-Fridelander R.Melchior F. (2007). Concepts in SUMOylation: a decade on. Nat. Rev. Mol. Cell Biol. 8 947–956 10.1038/nrm2293 18000527 [OpenAIRE] [PubMed] [DOI]

Hartmann-Petersen R.Seeger M.Gordon C. (2003). Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28 26–31 10.1016/S0968-0004(02)00002-6 12517449 [PubMed] [DOI]

Hatfield P. M.Gosink M. M.Carpenter T. B.Vierstra R. D. (1997). The ubiquitin-activating enzyme (E1) gene family in Arabidopsis thaliana. Plant J. 11 213–226 10.1046/j.1365-313X.1997.11020213.x 9076989 [OpenAIRE] [PubMed] [DOI]

47 references, page 1 of 4
Related research
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue