publication . Preprint . Conference object . 2007

Goal Oriented Adaptive Finite Element Method for the Precise Simulation of Optical Components

Lin Zschiedrich; Sven Burger; Jan Pomplun; Frank Schmidt;
Open Access English
  • Published: 15 Feb 2007
Abstract
Comment: 9 pages, 4 figures
Subjects
free text keywords: Physics - Optics, Physics - Computational Physics, Mixed finite element method, Optics, business.industry, business, Extended finite element method, Radiation, Physics, Estimator, Waveguide, law.invention, law, Propagation constant, Finite element method, Waveguide (optics)
Related Organizations

1. P. Bienstman, S. Selleri, and L. Rosa, “Modelling lossy photonics wires: a mode solver comparison,” OWTNM, 2006. [OpenAIRE]

2. R. Becker and R. Rannacher, “An optimal control approach to a posteriori error estimation in finite element methods,” in Acta Numerica 2000, A. Iserles, ed., pp. 1-102, Cambridge University Press.

3. F. Schmidt, “A New Approach to Coupled Interior-Exterior Helmholtz-Type Problems: Theory and Algorithms,” 2002. Habilitation thesis, Freie Universitaet Berlin.

4. T. Hohage, F. Schmidt, and L. Zschiedrich, “Solving Time-Harmonic Scattering Problems Based on the Pole Condition I: Theory,” SIAM J. Math. Anal. 35(1), pp. 183-210, 2003.

5. J.-P. B´erenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), pp. 185-200, 1994.

6. F. Collino and P. Monk, “The perfectly matched layer in curvilinear coordinates,” SIAM J. Sci. Comput. , 1998.

7. M. Lassas and E. Somersalo, “Analysis of the PML equations in general convex geometry,” in Proc. Roy. Soc. Edinburgh Sect. A 131, (5), pp. 1183-1207, 2001. [OpenAIRE]

8. M. Lassas, J. Liukkonen, and E. Somersalo, “Complex Riemannian metric and absorbing boundary condition.,” J. Math. Pures Appl. 80(7), pp. 739-768, 2001. [OpenAIRE]

9. T. Hohage, F. Schmidt, and L. Zschiedrich, “Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method,” SIAM J. Math. Anal. 35(3), pp. 547-560, 2003.

10. L. Zschiedrich, S. Burger, R. Klose, A. Scha¨dle, and F. Schmidt, “JCMmode: An adaptive finite element solver for the computation of leaky modes,” in Integrated Optics: Devices, Materials, and Technologies IX, Y. Sidorin and C. A. W¨achter, eds., 5728, pp. 192-202, Proc. SPIE, 2005.

11. L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, “Advanced Finite Element Method for NanoResonators,” in Physics and Simulation of Optoelectronic Devices XIV, M. Osinski, F. Henneberger, and Y. Arakawa, eds., 6115, pp. 164-174, SPIE, 2006. [OpenAIRE]

12. M. Paulus and O. Martin, “Green's tensor technique for scattering in two-dimensional stratified media,” Physical Review E 63, 2001.

13. V. Heuveline and R. Rannacher, “A posteriori error control for finite element approximations of elliptic eigenvalue problems,” J. Adv. Comp. Math. 15, p. 107, 2001.

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue