publication . Preprint . 2020

Quantum Algorithms for Open Lattice Field Theory

Hubisz, Jay; Sambasivam, Bharath; Unmuth-Yockey, Judah;
Open Access English
  • Published: 09 Dec 2020
Abstract
Certain aspects of some unitary quantum systems are well-described by evolution via a non-Hermitian effective Hamiltonian, as in the Wigner-Weisskopf theory for spontaneous decay. Conversely, any non-Hermitian Hamiltonian evolution can be accommodated in a corresponding unitary system + environment model via a generalization of Wigner-Weisskopf theory. This demonstrates the physical relevance of novel features such as exceptional points in quantum dynamics, and opens up avenues for studying many body systems in the complex plane of coupling constants. In the case of lattice field theory, sparsity lends these channels the promise of efficient simulation on standa...
Subjects
free text keywords: High Energy Physics - Lattice, Condensed Matter - Strongly Correlated Electrons, Quantum Physics
Related Organizations
Download from
40 references, page 1 of 3

[1] J. L. Cardy and G. Mussardo, Physics Letters B 225, 275 (1989).

[2] K. Uzelac, P. Pfeuty, and R. Jullien, Phys. Rev. Lett. 43, 805 (1979).

[3] C. Itzykson and J.-M. Drouffe, “Spontaneous symmetry breaking, mean field,” in Statistical Field Theory , Cambridge Monographs on Mathematical Physics, Vol. 1 (Cambridge University Press, 1989) p. 107-161.

[4] K. Uzelac, P. Pfeuty, and R. Jullien, Journal of Magnetism and Magnetic Materials 15-18, 1011 (1980).

[5] G. von Gehlen, J. Phys. A 24, 5371 (1991).

[6] B.-B. Wei, S.-W. Chen, H.-C. Po, and R.-B. Liu, Scientific Reports 4 (2014), 10.1038/srep05202.

[7] C. Itzykson, H. Saleur, and J.-B. Zuber, Europhysics Letters (EPL) 2, 91 (1986).

[8] A. M. Childs and T. Li, Quantum Information and Computation 17 (2017), 10.26421/qic17.11-12.

[9] R. Cleve and C. Wang, “Efficient quantum algorithms for simulating lindblad evolution,” (2016), arXiv:1612.09512 [quant-ph]. [OpenAIRE]

[10] M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert, Physical Review Letters 107 (2011), 10.1103/physrevlett.107.120501.

[11] R. A. Bertlmann, W. Grimus, and B. C. Hiesmayr, Physical Review A 73 (2006), 10.1103/physreva.73.054101.

[12] H. Feshbach, Annals of Physics 19, 287 (1962).

[13] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Physical Review Letters 114 (2015), 10.1103/physrevlett.114.090502.

[14] R. Di Candia, J. S. Pedernales, A. del Campo, E. Solano, and J. Casanova, Scientific Reports 5 (2015), 10.1038/srep09981.

[15] M. Motta, C. Sun, A. T. K. Tan, M. J. O'Rourke, E. Ye, A. J. Minnich, F. G. S. L. Brandão, and G. K.-L. Chan, Nature Physics 16, 205-210 (2019).

40 references, page 1 of 3
Abstract
Certain aspects of some unitary quantum systems are well-described by evolution via a non-Hermitian effective Hamiltonian, as in the Wigner-Weisskopf theory for spontaneous decay. Conversely, any non-Hermitian Hamiltonian evolution can be accommodated in a corresponding unitary system + environment model via a generalization of Wigner-Weisskopf theory. This demonstrates the physical relevance of novel features such as exceptional points in quantum dynamics, and opens up avenues for studying many body systems in the complex plane of coupling constants. In the case of lattice field theory, sparsity lends these channels the promise of efficient simulation on standa...
Subjects
free text keywords: High Energy Physics - Lattice, Condensed Matter - Strongly Correlated Electrons, Quantum Physics
Related Organizations
Download from
40 references, page 1 of 3

[1] J. L. Cardy and G. Mussardo, Physics Letters B 225, 275 (1989).

[2] K. Uzelac, P. Pfeuty, and R. Jullien, Phys. Rev. Lett. 43, 805 (1979).

[3] C. Itzykson and J.-M. Drouffe, “Spontaneous symmetry breaking, mean field,” in Statistical Field Theory , Cambridge Monographs on Mathematical Physics, Vol. 1 (Cambridge University Press, 1989) p. 107-161.

[4] K. Uzelac, P. Pfeuty, and R. Jullien, Journal of Magnetism and Magnetic Materials 15-18, 1011 (1980).

[5] G. von Gehlen, J. Phys. A 24, 5371 (1991).

[6] B.-B. Wei, S.-W. Chen, H.-C. Po, and R.-B. Liu, Scientific Reports 4 (2014), 10.1038/srep05202.

[7] C. Itzykson, H. Saleur, and J.-B. Zuber, Europhysics Letters (EPL) 2, 91 (1986).

[8] A. M. Childs and T. Li, Quantum Information and Computation 17 (2017), 10.26421/qic17.11-12.

[9] R. Cleve and C. Wang, “Efficient quantum algorithms for simulating lindblad evolution,” (2016), arXiv:1612.09512 [quant-ph]. [OpenAIRE]

[10] M. Kliesch, T. Barthel, C. Gogolin, M. Kastoryano, and J. Eisert, Physical Review Letters 107 (2011), 10.1103/physrevlett.107.120501.

[11] R. A. Bertlmann, W. Grimus, and B. C. Hiesmayr, Physical Review A 73 (2006), 10.1103/physreva.73.054101.

[12] H. Feshbach, Annals of Physics 19, 287 (1962).

[13] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma, Physical Review Letters 114 (2015), 10.1103/physrevlett.114.090502.

[14] R. Di Candia, J. S. Pedernales, A. del Campo, E. Solano, and J. Casanova, Scientific Reports 5 (2015), 10.1038/srep09981.

[15] M. Motta, C. Sun, A. T. K. Tan, M. J. O'Rourke, E. Ye, A. J. Minnich, F. G. S. L. Brandão, and G. K.-L. Chan, Nature Physics 16, 205-210 (2019).

40 references, page 1 of 3
Any information missing or wrong?Report an Issue