<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11012/200792
In this paper, we present two pipelines in order to reduce the feature space for anomalydetection using the One Class SVM. As a first stage of both pipelines, we compare the performanceof three convolutional autoencoders. We use the PCA method together with t-SNE as the first pipelineand the reconstruction errors based method as the second. Both methods have potential for theanomaly detection, but the reconstruction error metrics prove to be more robust for this task. Weshow that the convolutional autoencoder architecture doesn’t have a significant effect for this task andwe prove the potential of our approach on the real world dataset.
PCA, OC-SVM, Convolutional autoencoder, Anomaly detection, t-SNE, CNN
PCA, OC-SVM, Convolutional autoencoder, Anomaly detection, t-SNE, CNN
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |