publication . Article . Preprint . 2021

Dynamics of cascades on burstiness-controlled temporal networks

Unicomb, Samuel; Iñiguez, Gerardo; Gleeson, James P.; Karsai, Márton;
Open Access English
  • Published: 01 Dec 2021
  • Publisher: HAL CCSD
Temporal networks in which interaction events are distributed heterogeneously in time are complex to model. Unicomb et al. propose an analytical framework for the analysis of cascading dynamics in such networks, relevant for spin interactions, epidemic spreading, and language dynamics.
Persistent Identifiers
arXiv: Computer Science::Social and Information Networks
free text keywords: [INFO.INFO-SI]Computer Science [cs]/Social and Information Networks [cs.SI], epidemic contagion, Burstiness, Physics - Physics and Society, Chemistry(all), Biochemistry, Genetics and Molecular Biology(all), Physics and Astronomy(all), 113 Computer and information sciences, Article, Complex networks, Phase transitions and critical phenomena, lcsh:Science, lcsh:Q
Funded by
ANR| DataRedux
Big Data reduction for predictive computational modeling
  • Funder: French National Research Agency (ANR) (ANR)
  • Project Code: ANR-19-CE46-0008
EC| SoBigData-PlusPlus
SoBigData++: European Integrated Infrastructure for Social Mining and Big Data Analytics
  • Funder: European Commission (EC)
  • Project Code: 871042
  • Funding stream: H2020 | RIA
EC| X5gon
X5gon: Cross Modal, Cross Cultural, Cross Lingual, Cross Domain, and Cross Site Global OER Network
  • Funder: European Commission (EC)
  • Project Code: 761758
  • Funding stream: H2020 | IA
ANR| SoSweet
A sociolinguistics of Twitter : social links and linguistic variations
  • Funder: French National Research Agency (ANR) (ANR)
  • Project Code: ANR-15-CE38-0011
SFI| INSIGHT - Irelands Big Data and Analytics Research Centre
  • Funder: Science Foundation Ireland (SFI)
  • Project Code: 12/RC/2289
  • Funding stream: SFI Research Centres
SoBigDataSoBigData Projects: SoBigData-PlusPlus
52 references, page 1 of 4

[1] Holme, P. & Saramaki, J. Temporal networks. Phys. Rep. 519, 97{125 (2012).

[2] Masuda, N. & Lambiotte, R. A Guide to Temporal Networks (World Scienti c, 2016).

[3] Holme, P. Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015).

[4] Barabasi, A.-L. The origin of bursts and heavy tails in human dynamics. Nature 435, 207 (2005). [OpenAIRE]

[5] Goh, K.-I. & Barabasi, A.-L. Burstiness and memory in complex systems. EPL 81, 48002 (2008).

[6] Karsai, M., Kaski, K., Barabasi, A.-L. & Kertesz, J. Universal features of correlated bursty behaviour. Sci. Rep. 2, 1{7 (2012).

[7] Davidsen, J. & Kwiatek, G. Earthquake interevent time distribution for induced micro-, nano-, and picoseismicity. Phys. Rev. Lett. 110, 068501 (2013). [OpenAIRE]

[8] de Arcangelis, L., Godano, C., Lippiello, E. & Nicodemi, M. Universality in solar are and earthquake occurrence. Phys. Rev. Lett. 96, 051102 (2006).

[9] Turnbull, L., Dian, E. & Gross, G. The string method of burst identi cation in neuronal spike trains. J. Neurosci. Methods 145, 23{35 (2005).

[10] Karsai, M., Jo, H.-H. & Kaski, K. Bursty Human Dynamics (Springer, 2018).

[11] Karsai, M. et al. Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102 (2011).

[12] Lambiotte, R., Tabourier, L. & Delvenne, J.-C. Burstiness and spreading on temporal networks. Eur. Phys. J. B 86, 320 (2013). [OpenAIRE]

[13] Jo, H.-H., Perotti, J. I., Kaski, K. & Kertesz, J. Analytically solvable model of spreading dynamics with nonPoissonian processes. Phys. Rev. X 4, 011041 (2014).

[14] Horvath, D. X. & Kertesz, J. Spreading dynamics on networks: the role of burstiness, topology and nonstationarity. New J. Phys. 16, 073037 (2014). [OpenAIRE]

[15] Williams, O. E., Lillo, F. & Latora, V. E ects of memory on spreading processes in non-Markovian temporal networks. New J. Phys. 21, 043028 (2019).

52 references, page 1 of 4
Any information missing or wrong?Report an Issue