Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DIGITAL.CSICarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2012 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oecologia
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oecologia
Article . 2008
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes

Authors: Mateo, Miguel Ángel; Serrano, Oscar; Serrano, L.; Michener, R. H.;

Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes

Abstract

Trophic ecology has benefitted from the use of stable isotopes for the last three decades. However, during the last 10 years, there has been a growing awareness of the isotopic biases associated with some pre-analytical procedures that can seriously hamper the interpretation of food webs. We have assessed the extent of such biases by: (1) reviewing the literature on the topic, and (2) compiling C and N isotopic values of marine invertebrates reported in the literature with the associated sample preparation protocols. The factors considered were: acid-washing, distilled water rinsing (DWR), sample type (whole individuals or pieces of soft tissues), lipid content, and gut contents. Two-level ANOVA revealed overall large and highly significant effects of acidification for both delta(13)C values (up to 0.9 per thousand decrease) and delta(15) N values (up to 2.1 per thousand decrease in whole individual samples, and up to 1.1 per thousand increase in tissue samples). DWR showed a weak overall effect with delta(13)C increments of 0.6 per thousand (for the entire data set) or decrements of 0.7 per thousand in delta(15) N values (for tissue samples). Gut contents showed no overall significant effect, whereas lipid extraction resulted in the greatest biases in both isotopic signatures (delta(13)C, up to -2.0 per thousand in whole individuals; delta(15)N, up to +4.3 per thousand in tissue samples). The study analyzed separately the effects of the various factors in different taxonomic groups and revealed a very high diversity in the extent and direction of the effects. Maxillopoda, Gastropoda, and Polychaeta were the classes that showed the largest isotopic shifts associated with sample preparation. Guidelines for the standardization of sample preparation protocols for isotopic analysis are proposed both for large and small marine invertebrates. Broadly, these guidelines recommend: (1) avoiding both acid washing and DWR, and (2) performing lipid extraction and gut evacuation in most cases.

Country
Spain
Keywords

Carbon Isotopes, Food Chain, Ecology, Nitrogen Isotopes, Distilled water rinsing, Feeding Behavior, Lipid Metabolism, Lipid extraction, Invertebrates, Trophic ecology, Animals, Acid washing, Gut contents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    168
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 34
  • 34
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
168
Top 1%
Top 10%
Top 10%
34
Green