Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>AbstractY3Al5O12 (YAG) is a widely used phosphor host. Its optical properties are controlled by chemical substitution at its YO8 or AlO6/AlO4 sublattices, with emission wavelengths defined by rare‐earth and transition‐metal dopants that have been explored extensively. Nonstoichiometric compositions Y3+xAl5‐xO12 (x ≠ 0) may offer a route to new emission wavelengths by distributing dopants over two or more sublattices simultaneously, producing new local coordination environments for the activator ions. However, YAG typically behaves as a line phase, and such compositions are therefore challenging to synthesize. Here, a series of highly nonstoichiometric Y3+xAl5‐xO12 with 0 ≤ x ≤ 0.40 is reported, corresponding to ≤20% of the AlO6 sublattice substituted by Y3+, synthesized by advanced melt‐quenching techniques. This impacts the up‐conversion luminescence of Yb3+/Er3+‐doped systems, whose yellow‐green emission differs from the red‐orange emission of their stoichiometric counterparts. In contrast, the YAG:Ce3+ system has a different structural response to nonstoichiometry and its down‐conversion emission is only weakly affected. Analogous highly nonstoichiometric systems should be obtainable for a range of garnet materials, demonstrated here by the synthesis of Gd3.2Al4.8O12 and Gd3.2Ga4.8O12. This opens pathways to property tuning by control of host stoichiometry, and the prospect of improved performance or new applications for garnet‐type materials.
Luminescence, YAG, Aerodynamic levitation, Nonstoichiometry
Luminescence, YAG, Aerodynamic levitation, Nonstoichiometry
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 43 | |
| downloads | 43 |

Views provided by UsageCounts
Downloads provided by UsageCounts