Downloads provided by UsageCounts
handle: 10234/195079
The variability of the data and the incomplete knowledge of the true physics require the incorporation of randomness into the formulation of mathematical models. In this setting, the deterministic numerical methods cannot capture the propagation of the uncertainty from the inputs to the model output. For some problems, such as the Burgers' equation (simplification to understand properties of the Navier–Stokes equations), a small variation in the parameters causes nonnegligible changes in the output. Thus, suitable techniques for uncertainty quantification must be used. The generalized polynomial chaos (gPC) method has been successfully applied to compute the location of the transition layer of the steady-state solution, when a small uncertainty is incorporated into the boundary. On the contrary, the classical perturbation method does not give reliable results, due to the uncertainty magnitude of the output. We propose a modification of the perturbation method that converges and is comparable with the gPC approach in terms of efficiency and rate of convergence. The method is even applicable when the input random parameters are dependent random variables.
Navier–Stokes equation, Burgers' equation, gPC expansion, perturbation method, randomnessanalysis
Navier–Stokes equation, Burgers' equation, gPC expansion, perturbation method, randomnessanalysis
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 12 | |
| downloads | 46 |

Views provided by UsageCounts
Downloads provided by UsageCounts