Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A modified perturbation method for mathematical models with randomness: An analysis through the steady-state solution to Burgers’ PDE

Authors: Calatayud, Julia; Cortés, Juan Carlos; Jornet, Marc;

A modified perturbation method for mathematical models with randomness: An analysis through the steady-state solution to Burgers’ PDE

Abstract

The variability of the data and the incomplete knowledge of the true physics require the incorporation of randomness into the formulation of mathematical models. In this setting, the deterministic numerical methods cannot capture the propagation of the uncertainty from the inputs to the model output. For some problems, such as the Burgers' equation (simplification to understand properties of the Navier–Stokes equations), a small variation in the parameters causes nonnegligible changes in the output. Thus, suitable techniques for uncertainty quantification must be used. The generalized polynomial chaos (gPC) method has been successfully applied to compute the location of the transition layer of the steady-state solution, when a small uncertainty is incorporated into the boundary. On the contrary, the classical perturbation method does not give reliable results, due to the uncertainty magnitude of the output. We propose a modification of the perturbation method that converges and is comparable with the gPC approach in terms of efficiency and rate of convergence. The method is even applicable when the input random parameters are dependent random variables.

Related Organizations
Keywords

Navier–Stokes equation, Burgers' equation, gPC expansion, perturbation method, randomnessanalysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 12
    download downloads 46
  • 12
    views
    46
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
12
46
Green