
We explicate Flach's and Morin's special value conjectures in [8] for proper regular arithmetic surfaces π : X → Spec Z and provide explicit formulas for the conjectural vanishing orders and leading Taylor coefficients of the associated arithmetic zeta-functions. In particular, we prove compatibility with the Birch and Swinnerton-Dyer conjecture, which has so far only been known for projective smooth X. Further, we derive a direct sum decomposition of Rπ*Z(n) into motivic degree components.
Special Values, Zeta-Functions, Arithmetic Surface, FOS: Mathematics, Mathematics
Special Values, Zeta-Functions, Arithmetic Surface, FOS: Mathematics, Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
