Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oceanography
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oceanography
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Keeping an Eye on Antarctic Ice Sheet Stability

Authors: Escutia, Carlota; DeConto, Robert M.; Dunbar, Robert; De Santis, Laura; Shevenell, Amelia E; Naish, Timothy;

Keeping an Eye on Antarctic Ice Sheet Stability

Abstract

Knowledge of how the Antarctic Ice Sheet (AIS) responded in the geologic past to warming climates will provide powerful insight into its poorly understood role in future global sea level change. Study of past natural climate changes allows us to determine the sensitivity of the AIS to higher-than-present atmospheric carbon dioxide (CO) concentrations and global temperatures, thereby providing the opportunity to improve the skill and performance of ice sheet models used for Intergovernmental Panel on Climate Change (IPCC) future projections. Antarctic and Southern Ocean (south of 60°S latitude) marine sediment records obtained over the last 50 years by seven scientific ocean drilling expeditions have revolutionized our understanding of Earth’s climate system and the evolution and dynamics of the Antarctic ice sheets through the Cenozoic (0–65 million years ago). These records document an ice-free subtropical Antarctica between ~52 and 40 million years ago when CO was ~1,000 ppm; the initiation of continental-scale Antarctic ice sheets ~34 million years ago as CO dropped below 800 ppm; evidence for a dynamic, largely terrestrial, ice sheet driving global sea level changes of up to 40 m amplitude between 34 and 15 million years ago; and colder periods of highly dynamic, marine-based ice sheets contributing up to 20 m of global sea level rise when CO levels were in the range of 500–300 ppm between ~14 and 3 million years ago. Notwithstanding these discoveries, paleoenvironmental records obtained around Antarctica are still limited in their geographical coverage and do not provide a basis for comprehensive understanding of how different sectors of Antarctica respond to climate perturbations. Transects of drill cores spanning ice-proximal to ice-distal environments across the continental margin and at sensitive locations that have been identified by models and recent observations are needed to fully understand temporal and spatial ice volume changes that result from complex ice sheet-ocean-atmosphere interactions. These records are also critical for reconstructing equator-to-pole temperature gradients through time to better understand global climate change, interhemispheric long-distance transmission of changes through the atmosphere and ocean (teleconnec-tions), and the amplification of climate signals in the polar regions. Future Antarctic scientific ocean drilling will remain key to obtaining records of past Antarctic Ice Sheet dynamics that can be integrated into coupled ice sheet-climate models for improved projections of sea level change. Thus, keeping an eye on ice sheet stability is critical for improving the accuracy and precision of predictions of future changes in global and regional temperatures and sea level rise.

The authors are thankful for the opportunity to undertake this Antarctic scientific ocean drilling 50-year review and outlook into the future. We are especially thankful to two formal reviewers and to Anthony Koppers and Debbie Thomas for their useful comments on various aspects of the manuscript. Support for C. Escutia to conduct this activity comes from Grant CTM2017-89711-C2-1-P, CGL2016-75679P, co-funded by the European Union through FEDER funds.

Keywords

550, Life Sciences, 551

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 40
    download downloads 91
  • 40
    views
    91
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
23
Top 10%
Average
Top 10%
40
91
Green
gold