Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5445/ir/100...
Other literature type . Article . Doctoral thesis . Thesis . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
KITopen
Doctoral thesis . 2021
Data sources: KITopen
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plasmonic-Organic and Silicon-Organic Hybrid Modulators for High-Speed Signal Processing

Authors: Ummethala, Sandeep;

Plasmonic-Organic and Silicon-Organic Hybrid Modulators for High-Speed Signal Processing

Abstract

High-speed electro-optic (EO) modulators are key devices for optical communications, microwave photonics, and for broadband signal processing. Among the different material platforms for high-density photonic integrated circuits (PIC), silicon photonics sticks out because of CMOS foundries specialized in PIC fabrication. However, the absence of the Pockels effect in silicon renders EO modulators with high-efficiency and large modulation bandwidth difficult. In this dissertation, plasmonic and photonic slot waveguide modulators are investigated. The devices are built on the silicon platform and are combined with highly-efficient organic EO materials. Using such a hybrid platform, we realize compact and fast plasmonic-organic hybrid (POH) and silicon-organic hybrid (SOH) modulators. As an application example, we demonstrate for the first time an advanced terahertz communication link by directly converting data on a 360 GHz carrier to a data stream on an optical carrier. For optical transmitter applications, we overcome the bandwidth limitation of conventional SOH modulators by introducing a high-k dielectric microwave slotline for guiding the modulating radio-frequency signal which is capacitively-coupled to the EO modulating region. We confirm the viability of such capacitively-coupled SOH modulators by generating four-state pulse amplitude modulated signals with data rates up to 200 Gbit/s.

Country
Germany
Related Organizations
Subjects by Vocabulary

Dewey Decimal Classification: ddc:620

Keywords

Silicon photonics, hybrid electro-optic modulators, therahertz-to-optical conversion, Engineering & allied operations, plasmonics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average