Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Conditioning of variational autoencoder by user traits for item recommendation

Authors: Tachioka, Yuuki;

Conditioning of variational autoencoder by user traits for item recommendation

Abstract

Deep learning-based recommendation algorithms have recently at- tracted attention due to their effectiveness at processing big data. Methods based on the variational autoencoder (VAE) are particularly promising thanks to their advantage with the data sparsity problem in recommendation tasks. However, because user traits affect the preference of recommended items, to improve the performance of VAE-based recommendation methods, it is necessary to carefully consider user traits. In this paper, we propose a method that conditions the VAE with user trait labels for switching the distributions of a generative model of latent variables. Experiments on a music recommendation task demonstrate that utilizing user trait labels estimated from tweet history leads to an improved performance and that the distribution can be changed depending on the individual traits of users.

Keywords

recommendation model, user traits, OCEAN (BigFive) traits, conditional variational autoencoder

Powered by OpenAIRE graph
Found an issue? Give us feedback