
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this paper, multi-tier LiFi networks are studied in terms of energy efficiency (EE) and spectral efficiency (SE), which are crucial metrics for LiFi system design. We derived a closed-form expression of the user association probability for different tiers using stochastic geometry based Poisson Voronoi Tessellation (PVT) LiFi network. The performance metrics of the network, EE and SE, are analyzed in terms of different parameters such as transmit power and Lambertian index. Performance evaluations and numerical results show that multi-tier LiFi networks have an optimum transmit power in which EE is maximized. Besides, increasing the transmit power does not increase SE after passing a threshold point. The resulting trade-off between EE and SE is presented.
Electric networks
Electric networks
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::6bcf4124448047434930889eaf724564&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::6bcf4124448047434930889eaf724564&type=result"></script>');
-->
</script>
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 55 | |
downloads | 54 |