<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractGeyser and volcano monitoring suffer from temporal, geographic, and instrumental biases. We present a recording bias identified through multiyear monitoring of Steamboat Geyser in Yellowstone National Park, USA. Eruptions of Steamboat are the tallest of any geyser in the world and they produce broadband signals at two nearby stations in the Yellowstone National Park Seismograph Network. In winter, we observe lower eruption signal amplitudes at these seismometers. Instead of a source effect, we find that environmental conditions affect the recorded signals. Lower amplitudes for 23–45 Hz frequencies are correlated with greater snow depths at the station 340 m away from Steamboat, and we calculate an energy attenuation coefficient of 0.21 ± 0.01 dB per cm of snow. More long‐term monitoring is needed at geysers to track changes over time and identify recording biases that may be missed during short, sporadic studies.
snow acoustics, ground-coupled airwaves, hydrothermal, volcano monitoring, QC801-809, ground‐coupled airwaves, Geophysics. Cosmic physics, Yellowstone, geyser
snow acoustics, ground-coupled airwaves, hydrothermal, volcano monitoring, QC801-809, ground‐coupled airwaves, Geophysics. Cosmic physics, Yellowstone, geyser
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |