<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this paper is presented an approach for fast and accurate segmentation of Deformable Linear Objects (DLOs) named FASTDLO. The perception is obtained from the combination of a deep convolutional neural network for the background segmentation and a pipeline for the dlo identification. The pipeline is based on skeletonization algorithm to highlights the structure of the DLO and a similarity-based network to solve the intersection. FASTDLO is trained only on synthetically generated data, leaving real-data only for evaluation purpose. FASTDLO is experimentally compared against DLO-specific approach achieving better overall performances and a processing rate higher than 20 FPS.
Computer Vision, Deformable Linear Objects, Industrial Manufacturing
Computer Vision, Deformable Linear Objects, Industrial Manufacturing
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::67bdbd45307d5d568f95cd370ab9cba9&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::67bdbd45307d5d568f95cd370ab9cba9&type=result"></script>');
-->
</script>