Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2022
License: CC BY
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FASTDLO: Towards Real-Time Perception of Deformable Linear Objects

Authors: Caporali, Alessio; Palli, Gianluca; Galassi, Kevin;

FASTDLO: Towards Real-Time Perception of Deformable Linear Objects

Abstract

In this paper is presented an approach for fast and accurate segmentation of Deformable Linear Objects (DLOs) named FASTDLO. The perception is obtained from the combination of a deep convolutional neural network for the background segmentation and a pipeline for the dlo identification. The pipeline is based on skeletonization algorithm to highlights the structure of the DLO and a similarity-based network to solve the intersection. FASTDLO is trained only on synthetically generated data, leaving real-data only for evaluation purpose. FASTDLO is experimentally compared against DLO-specific approach achieving better overall performances and a processing rate higher than 20 FPS.

Keywords

Computer Vision, Deformable Linear Objects, Industrial Manufacturing

Powered by OpenAIRE graph
Found an issue? Give us feedback
Funded by