Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Article . 2022
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Other literature type . Conference object . Article . 2022
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/embc48...
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Detection of Asymptomatic Carotid Artery Stenosis through Machine Learning.

Authors: Vassiliki I, Kigka; Antonis I, Sakellarios; Vassilis D, Tsakanikas; Vassiliki T, Potsika; Igor, Koncar; Dimitrios I, Fotiadis;

Detection of Asymptomatic Carotid Artery Stenosis through Machine Learning.

Abstract

arteries, is considered as the most significant cause of cerebral events and stroke. Carotid artery disease is considered as an inflammatory process, which involves the deposition and accumulation of atherosclerotic plaque inside the carotid intima, resulting in the narrowing of the arteries. Carotid artery stenosis (CAS) is either symptomatic or asymptomatic and its presence and location is determined by different imaging modalities, such as the carotid duplex ultrasound, the computed tomography angiography, the magnetic resonance angiography (MRA) and the cerebral angiography. The aim of this study is to present a machine learning model for the diagnosis and identification of individuals of asymptomatic carotid artery stenosis, using as input typical health data. More specifically, the overall model is trained with typical demographics, clinical data, risk factors and medical treatment data and is able to classify the individuals into high risk (Class 1-CAS group) and low risk (Class 0-non CAS group) individuals. In the presented study, we implemented a statistical analysis to check the data quality and the distribution into the two classes. Different feature selection techniques, in combination with classification schemes were applied for the development of our machine learning model. The overall methodology has been trained and tested using 881 cases (443 subjects in low risk class and 438 in high risk class). The highest accuracy 0.82 and an area under curve 0.9 were achieved using the relief feature selection technique and the random forest classification scheme.

Related Organizations
Keywords

Machine Learning, Carotid Arteries, Humans, Carotid Stenosis, carotid disease, asymptomatic carotid artery stenosis, machine learning, risk stratification, Magnetic Resonance Angiography, Plaque, Atherosclerotic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 17
  • 17
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
2
Average
Average
Average
17