
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
arteries, is considered as the most significant cause of cerebral events and stroke. Carotid artery disease is considered as an inflammatory process, which involves the deposition and accumulation of atherosclerotic plaque inside the carotid intima, resulting in the narrowing of the arteries. Carotid artery stenosis (CAS) is either symptomatic or asymptomatic and its presence and location is determined by different imaging modalities, such as the carotid duplex ultrasound, the computed tomography angiography, the magnetic resonance angiography (MRA) and the cerebral angiography. The aim of this study is to present a machine learning model for the diagnosis and identification of individuals of asymptomatic carotid artery stenosis, using as input typical health data. More specifically, the overall model is trained with typical demographics, clinical data, risk factors and medical treatment data and is able to classify the individuals into high risk (Class 1-CAS group) and low risk (Class 0-non CAS group) individuals. In the presented study, we implemented a statistical analysis to check the data quality and the distribution into the two classes. Different feature selection techniques, in combination with classification schemes were applied for the development of our machine learning model. The overall methodology has been trained and tested using 881 cases (443 subjects in low risk class and 438 in high risk class). The highest accuracy 0.82 and an area under curve 0.9 were achieved using the relief feature selection technique and the random forest classification scheme.
Machine Learning, Carotid Arteries, Humans, Carotid Stenosis, carotid disease, asymptomatic carotid artery stenosis, machine learning, risk stratification, Magnetic Resonance Angiography, Plaque, Atherosclerotic
Machine Learning, Carotid Arteries, Humans, Carotid Stenosis, carotid disease, asymptomatic carotid artery stenosis, machine learning, risk stratification, Magnetic Resonance Angiography, Plaque, Atherosclerotic
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::916bc02023a236963d3197b11a9b68ca&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=sygma_______::916bc02023a236963d3197b11a9b68ca&type=result"></script>');
-->
</script>
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 17 |