<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
{"references": ["Arya S., Mount D., Netanyahu N., Silverman R., and Wu A. (1998). \"An optimal algorithm for approximate nearest neighbor searching in high dimensions\". J. ACM 45 (6) 891-923.", "Athitsos V., Alon J. and Sclaroff S. (2005) \"Efficient nearest neighbour classification using cascade of approximate with similarity measures\". Boston University Computer Science Tech. Report No. 2005-009.", "Bandyopadhyay S. & Maulik U. (2002).\"Efficient prototype reordering in nearest neighbor classification\". Pattern Recognition 35 pp: 2791-2799.", "Cheng D., Gersho A., Ramamurthi B. and Shoham Y. (1984). \"Fast search algorithms for vector quantization and pattern matching\". Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 9.11.1-9.11.4.", "Cover T. M. and Hart P. E. (1967). \"Nearest neighbor pattern classification\". Trans. Information Theory. 13, pp. 21\u00ac27.", "Deerwester S., Dumals S., Furnas T., Landauer G. & Harshman R. (1990). \"Indexing by latent semantic analysis\". J. Amer. Soc. Inform. Sci. 41, pp. 391-407.", "Fisher F. & Patrick E. (1970).\"A preprocessing algorithm for nearest neighbour decision rules\". Proc. Nat. Electronics Conf., vol. 26, pp. 481- 485.", "Friedman J. H., Bentley J. L. and Finkel R. A. (1977). \"An algorithm for finding best matches in logarithmic expected time\". ACM Transactions on Mathematical Software 3 (3), pp. 209-226.", "Fukunaga K. and Narendra P. (1975). \"A branch and bound algorithm for computing k-nearest neighbors\". IEEE Trans. Comput. 24, pp. 743- 750.", "Gersho A. and Gray R. (1991). \"Vector Quantization and Signal Compression\". Kluwer Academic, Boston, MA.", "G\u00f3mez-Ballester E., Mico L., and Oncina J. (2006). \"Some approaches to improve tree-based nearest neighbor search algorithms\". Pattern Recognition Letters, vol. 39 pp. 171- 179.", "Hwang W. & Wen K. (2002). \"Fast kNN classification algorithm based on partial distance search\". Electronics Letters,vol 34: 21, pp. 2062-2063.", "Kalantari I. and McDonald G. (1983).\"A data structure and an algorithm for the nearest point problem\". IEEE Trans. Software Eng. 9, pp. 631-634.", "Ke Li and Jitendra Malik. (2017). \"Fast k-Nearest Neighbors via Prioritized DCI\".Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70.", "K. He, F. Wen, J. Sun. (2013). \"K-means hashing: An affinity-preserving quantization method for learning binary compact codes\", IEEE Conference on Computer Vision and Pattern Recognition, pp. 2938-2945.", "Li, Ke and Malik, Jitendra. (2016). Fast k-nearest neighbour search via Dynamic Continuous Indexing. International Conference on Machine Learning, pp. 671\u2013679.", "Lucas J. P., Luz N., and Moreno M. N. (2013). \"A hybrid recommendation approach for a tourism system\". Expert Systems with Applications. 40, pp. 3532-3550.", "Mico L., Oncina J., and Vidal E. (1994). \"A new version of the nearest- neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing-time and memory requirements\". Pattern Recognition Letters, vol. 15, pp. 9-17.", "Moreno-Seco F., Mico L., and Oncina J. (2003). \"Approximate Nearest Neighbor Search with the Fukunaga and Narendra Algorithm and its Application to Chromosome Classification\". CIARP, LNCS 2905, pp. 322-328.", "Nene S. and Nayar S. (1997). \"A simple algorithm for nearest neighbour search in high dimensions\". IEEE Trans. Pattern Anal. Mach. Intell. 19 (9) 989-1003.", "Niijima, S. and Kuhara, S. (2005). \"Effective nearest neighbors methods for multiclass cancer classification using microarray data\". Poster presented at the 16th International Conference on Genome Informatics, December 19-21, 2005, Yokohama Pacifico, Japan.", "Oncina J., Thollard F., Gomez-Ballester E., Mica L., and Moreno-Seco F. (2007). \"A Tabular Pruning Rule in Tree- Based Fast Nearest Neighbor Search Algorithms\". IbPRIA, LNCS 4478, pp. 306-313.", "Orchard, Michael T. (1991). A fast nearest-neighbor search algorithm. In 1991 International Conference on Acoustics, Speech and Signal Processing, 1991. ICASSP-91., Volume 4 (pp. 2297\u20133000). IEEE Press.", "Stelios and Bakamidis. (1993). \"An exact fast nearest neighbour identification technique\". In IEEE International Conference on Acoustics, Speech and Signal processing. 5, pp. 658- 661.", "Vidal E. (1986). An algorithm for finding nearest neighbours in (approximately) constant average Universita Ciencia a\u00f1o 10, n\u00famero 28 may-ago 2022 46 time complexity. Pattern Recognition Letters, vol. 4, pp. 145-157.", "Wolfson H. (1990). Model-Based object recognition by geometric hashing. Proc. First European Conf. Comp. Vision, pp. 526-536.", "Yalin Chen, Zhiyang Li, Jia Shi, Zhaobin Liu, Wenyu Qu. (2018). Stacked K-Means Hashing Quantization for Nearest Neighbor Search. 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM).", "Yunck, T. (1976). A technique to identify nearest neighbors. IEE Trans. On S.M.C., SMC-6:10."]}
Actualmente, en diferentes ciencias como la medicina, las geociencias, la astronomía, entre otras, la tarea de clasificación supervisada ha dado solución a muchos problemas importantes. Uno de los algoritmos de clasificación supervisada más utilizados ha sido k vecinos más cercanos (o k Neares Neighbors, k-NN), el cual ha mostrado ser un algoritmo simple, pero efectivo. El algoritmo k vecinos más cercanos realiza una comparación exhaustiva entre el nuevo objeto a clasificar y todos los elementos del conjunto de entrenamiento. Sin embargo, cuando el conjunto de entrenamiento es grande, este proceso es costoso y en algunos casos esta búsqueda exhaustiva se vuelve un proceso muy lento o inaplicable. Para agilizar el proceso de clasificación y omitir comparaciones, se han propuesto en los últimos años clasificadores rápidos basados en el algoritmo del vecino más cercano (Fast k-NN). La mayoría de estos algoritmos Fast k-NN se basan en las propiedades métricas de la función de distancia para omitir comparaciones o bien otras heurísticas.
Social sciences (General), H1-99, clasificadores rápidos, vecino cercano, Clasificadores rápidos basados en el algoritmo del vecino más cercano, regla del vecino más cercano, Regla del vecino más cercano
Social sciences (General), H1-99, clasificadores rápidos, vecino cercano, Clasificadores rápidos basados en el algoritmo del vecino más cercano, regla del vecino más cercano, Regla del vecino más cercano