Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Latent program modeling: Inferring latent problem-solving strategies from a PISA problem- solving task

Authors: Lundgren, Erik;

Latent program modeling: Inferring latent problem-solving strategies from a PISA problem- solving task

Abstract

Response process data have the potential to provide a rich description of test-takers’ thinking processes. However, retrieving insights from these data presents a challenge for educational assessments and educational data mining as they are complex and not well annotated. The present study addresses this challenge by developing a computational model that simulates how different problem-solving strategies would behave while searching for a solution to a Program for International Student Assessment (PISA) 2012 problem-solving item, and uses n-gram processing of data together with a naive Bayesian classifier to infer latent problem-solving strategies from the test-takers’ response process data. The retrieval of simulated strategies improved with increased n-gram length, reaching an accuracy of 0.72 on the original PISA task. Applying the model to generalized versions of the task showed that classification accuracy increased with problem size and the mean number of actions, reaching a classification accuracy of 0.90 for certain task versions. The strategy that was most efficient and effective in the PISA Traffic task evaluated paths based on the labeled travel time. However, in generalized versions of the task, a straight line strategy was more effective. When applying the classifier to empirical data, most test-takers were classified as using a random path strategy (46%). Test-takers classified as using the travel time strategy had the highest probability of solving the task. The test-takers classified as using the random actions strategy had the lowest probability of solving the task. The effect of (classified) strategy on general PISA problem-solving performance was overall weak, except for a negative effect for the random actions strategy (β ≈ −65, CI95% ≈ [−96,−36]). The study contributes with a novel approach to inferring latent problem-solving strategies from action sequences. The study also illustrates how simulations can provide valuable information about item design by exploring how changing item properties could affect the accuracy of inferences about unobserved problem-solving strategies.

Related Organizations
Keywords

computational cognitive modeling, problem-solving, process data, PISA, educational assessment

Powered by OpenAIRE graph
Found an issue? Give us feedback