Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Laotian Bat Sarbecovirus BANAL-236 Uses ACE2 to Infect Cells by an Unknown Mechanism

Authors: Quay, Steven Carl;

Laotian Bat Sarbecovirus BANAL-236 Uses ACE2 to Infect Cells by an Unknown Mechanism

Abstract

A manuscript identified bat sarbecoviruses with high sequence homology to SARS-CoV-2 found in caves in Laos that can directly infect human cells via the human ACE2 receptor (Coronaviruses with a SARS-CoV-2-like receptor binding domain allowing ACE2-mediated entry into human cells isolated from bats of Indochinese peninsula, Temmam S., et al. https://www.researchsquare.com/article/rs-871965/v1). Here, I examine the genomic sequence of one of these viruses, BANAL-236, and show it has 5���-UTR and 3���-UTR secondary structures that are non-canonical and, in fact, have never been seen in an infective coronavirus. Specifically, the 5���-UTR has a 177 nt copy-back extension which forms an extended, highly stable duplex RNA structure. Because of this copy-back, the four obligate Stem Loops (SL) -1, -2, -3, and -4 cis-acting elements found in all currently known replicating coronaviruses are buried in the extended duplex. The 3���-UTR has a similar fold-back duplex of 144 nts and is missing the obligate poly-A tail. Taken together, these findings demonstrate BANAL-236 is missing eight obligate UTR cis-acting elements; each one of which has previously been lethal to replication when modified individually. Neither duplex copyback has ever been observed in an infective sarbecovirus, although some of the features have been seen in defective interfering particles, which can be found in co-infections with non-defective, replicating viruses. They are also a common error seen during synthetic genome assembly in a laboratory. BANAL-236 must have evolved an entirely unique mechanism for replication, RNA translation, and RNA packaging never seen in a coronavirus and because it is a bat sarbecovirus closely related to SARS-CoV-2, it is imperative that we understand its unique mode of infectivity by a collaborative, international research effort.

BANAL-236 is the first infective coronavirus lacking eight obligate cis-acting UTR genomic secondary structures that are conserved in all known coronaviruses

Related Organizations
Keywords

Genomics (q-bio.GN), SARS-CoV-2 BANAL-236 Institut Pasteur Laos Sarbecovirus cis-acting elements, FOS: Biological sciences, Quantitative Biology - Genomics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 16
    download downloads 13
  • 16
    views
    13
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
16
13
Green