Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . Other literature type . 2019
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2019
License: CC BY
Data sources: ZENODO
Hal-Diderot
Conference object . 2019
Data sources: Hal-Diderot
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analytical, Numerical and Experimental Analysis of the Vibrational Behavior of Adhesively Composite Double-Lap Joints

Authors: Salloum, Elias; Challita, Georges; Alhussein, Akram; Khalil, Khaled;

Analytical, Numerical and Experimental Analysis of the Vibrational Behavior of Adhesively Composite Double-Lap Joints

Abstract

In this paper an analytical model based on finite element energy formulation that calculates free vibration frequencies of cantilevered-free laminated double lap bonded joints is established. 8-noded serendipity element with quadrature Gaussian formula was adopted. This model was validated using 3D finite element model through ANSYS Workbench. The results have shown good agreement for steel and composite while it was not the case for polymeric substrates. Moreover, an experimental procedure for analysing the vibrational response of adhesively composite double lap joints is presented in this paper. The Impulse Excitation Technique (IET) has been adopted in order to measure the resonant frequencies. Two types of substrates were examined: steel and orthotropic glass-polypropylene composite and the adhesive used is a resin/epoxy constituent. Three different substrates thicknesses and three different overlap lengths were examined. Then, the experimental results were compared with numerical simulations using 3D finite element model through ANSYS Workbench. The results have shown good agreement between both models. Finally, the analytical model was applied to compare the experimental results in the scope of a parametric study towards the influence that some geometrical and mechanical properties of the adherents have on the vibrational response of the structure.

Country
France
Keywords

[SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph], [SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph], Double-lap joints, Adhesion, Modal analysis, Impulse Excitation Technique, Finite Elements, [SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph], [SPI.MAT]Engineering Sciences [physics]/Materials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Funded by
Related to Research communities