<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Current state-of-the-art computer simulations allow us to build 3D dynamical and radiative models of stars from physical first principles with a high degree of realism. The radiative 3D dynamical stellar models obtained with the StellarBox code take into account the effects of turbulence, stellar abundances, a realistic equation of state, and radiative energy transport. In this talk, I will discuss the effects of rotation on the turbulent dynamics and surface structure for a 1.47 Msun star for rotational periods of 1 and 14 days. The simulations are performed with the computational domain at various latitudes. The models reproduce stellar granulation, the subsurface shear layer, structural changes in convection, and the tachocline, which is the interface between the inner radiative zone and the outer convection zone and plays a crucial role in stellar variability. In particular, the model results reveal the formation of differential rotation and meridional circulation.
The work is supported by NASA Astrophysics Theory Program.
main-sequence stars, modeling, rotation
main-sequence stars, modeling, rotation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |