Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . Other literature type . Conference object . 2021
License: CC BY
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Communication with Ambient Light using Digital Micromirror Devices

Authors: Blokker, Roy; Xu, Talia; Zúñiga Zamalloa, Marco A.;

Communication with Ambient Light using Digital Micromirror Devices

Abstract

Passive visible light communication (VLC) takes advantage of the pervasive nature of ambient light in our environment for wireless transmissions. The design of transmitters in passive VLC predominately uses liquid crystal displays (LCDs). While LCDs are an economical choice with low power consumption, they lack some key properties that are desirable for passive VLC. For example, LCDs absorb more than half of the incident light, leaving only a small portion to be used for communication. In addition, since the direction of ambient can change over time, the relative positions of the LCDs and receivers have to be changed constantly to maintain the correct alignment. To overcome these shortcomings, we propose the use of a novel transmitter with integrated optical fibres and digital micro-mirror devices (DMDs). DMDs are able to reflect up to 97% of the incident light, while the accompanying optical fibres aim to capture ambient light from various angles and guide them to the DMDs in a fixed direction. This design is a first step towards the goal of decoupling the direction of ambient light from the direction of the optical link, while achieving the same communication characteristics as LCDs with a much smaller device. We also design an App to allow users to easily interact with the system and our evaluation shows that the link can achieve a data rate of 1bps at a distance of 30cm.

Powered by OpenAIRE graph
Found an issue? Give us feedback
Funded by