publication . Article . Preprint . Other literature type . 2021

Two-stage Seebeck effect in charged colloidal suspensions

Ioulia Chikina; Sawako Nakamae; V. B. Shikin; Andrey Varlamov;
Open Access English
  • Published: 26 Jan 2021
  • Publisher: HAL CCSD
  • Country: France
steady state&rdquo
Medical Subject Headings: digestive, oral, and skin physiologycomplex mixturesendocrine systembody regions
free text keywords: seebeck effect, colloids, thermodiffusion, [CHIM.MATE]Chemical Sciences/Material chemistry, [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry, General Physics and Astronomy, PACS numbers: 82.45.Gj, 65.20.-w, 44.35.+c, [PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft], Article, Condensed Matter - Soft Condensed Matter, lcsh:Science, lcsh:Q, lcsh:Astrophysics, lcsh:QB460-466, lcsh:Physics, lcsh:QC1-999, Chemical physics, Colloid, Thermal diffusivity, Suspension (vehicle), Electric field, Materials science, Electrolyte, Steady state, Ion, Thermoelectric effect
  • FET H2020
Funded by
MAGnetic nanoparticle based liquid ENergy materials for Thermoelectric device Applications
  • Funder: European Commission (EC)
  • Project Code: 731976
  • Funding stream: H2020 | RIA
Open Access
Article . 2021
Provider: Datacite
Open Access
Article . 2021
Provider: Datacite
Open Access
Article . 2021
Provider: ZENODO
31 references, page 1 of 3

1. Dupont, M.F.; MacFarlane, D.R.; Pringle, J.M. Thermo-electrochemical cells for waste heat harvesting-Progress and perspectives. Chem. Commun. 2017, 53, 6288-6302. [CrossRef] [PubMed]

2. Salez, T.J.; Huang, B.T.; Rietjens, M.; Bonetti, M.; Wiertel-Gasquet, C.; Roger, M.; Filomeno, C.L.; Dubois, E.; Perzynskic, R.; Nakamae, S. Can charged colloidal particles increase the thermoelectric energy conversion efficiency? Phys. Chem. Chem. Phys. 2017, 19, 9409-9416. [CrossRef] [PubMed] [OpenAIRE]

3. Sehnem, A.L.; Janssen, M. Determining single-ion Soret coefficients from the transient electrolyte Seebeck effect. arXiv 2020, arXiv:2006.11081v1.

4. Riedl, J.C.; Akhavan Kazemi, M.A.; Cousin, F.; Dubois, E.; Fantini, S.; Lois, S.; Perzynski, R.; Peyre, V. Colloidal Dispersions of Oxide Nanoparticles in Ionic Liquids : Elucidating the Key Parameters. ChemRxiv 2019. [CrossRef]

5. Bacri, J.C.; Perzynski, R.; Salin, D.; Cabuil, V.; Massart, R. Ionic ferrofluids: A crossing of chemistry and physics. J. Magn. Magn. Mater. 1990, 85, 27-32. [CrossRef]

6. Dubois, E. Structural analogy between aqueous and oily magnetic fluids. J. Chem. Phys. 1999, 111, 7147-7160. [CrossRef]

7. Derjaguin, B.V.; Landau, L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys. Chem. URSS 1941, 14, 633-662. [CrossRef]

8. Verwey, E.; Overbeek, J. Theory of the Stability of Lyophobic Colloids; Elsevier: Amsterdam, The Netherlands, 1948; pp. 131-136.

9. Landau, L.D.; Lifshitz, E.M. Statistical Physics. In Course of Theoretical Physics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 5, pp. 276-278.

10. Guthrie, G., Jr.; Wilson, J.N.; Schomaker, V. Theory of the thermal diffusion of electrolytes in a Clusius column. J. Chem. Phys. 1941, 17, 310-313. [CrossRef]

11. Agar, J.N.; Turner, J. Thermal diffusion in solutions of electrolytes. Proc. R. Soc. Lond. Ser. A 1960, 255, 307-330. doi:10.1098/rspa.1960.0070. [CrossRef]

12. Agar, J.N.; Mou, C.Y.; Lin, J.-I. Single-Ion Heat of Transport in Electrolyte Solutions: A Hydrodynamic Theory. Phys. Chem. 1989, 93, 2079-2082. [CrossRef]

13. Wurger, A. Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 2010, 73, 126601. [CrossRef] [OpenAIRE]

14. Majee, A.; Wurger, A. Collective thermo-electrophoresis of charged colloids. Phys. Rev. 2011, E83, 061403-061409.

15. Wagner, C. Die Oberflachenspannung verdunnter Elektrolytlosungen. Phys Z. 1924, 25, 474-477.

31 references, page 1 of 3
Any information missing or wrong?Report an Issue