
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Restricted Boltzmann Machines (RBMs) and autoencoders have been used-in several variants-for similar tasks, such as reducing dimensionality or extracting features from signals. Even though their structures are quite similar, they rely on different training theories. Lately, they have been largely used as building blocks in deep learning architectures that are called deep belief networks (instead of stacked RBMs) and stacked autoencoders. In light of this, the student has worked on this thesis with the aim to understand the extent of the similarities and the overall pros and cons of using either RBMs, autoencoders or denoising autoencoders in deep networks. Important characteristics are tested, such as the robustness to noise, the influence on training of the availability of data and the tendency to overtrain. The author has then dedicated part of the thesis to study how the three deep networks in exam form their deep internal representations and how similar these can be to each other. In result of this, a novel approach for the evaluation of internal representations is presented with the name of F-Mapping. Results are reported and discussed.
Machine Learning, Deep Learning, Stacked Autoencoder, Restricted Boltzmann Machine, Computer Science, Restricted Boltzmann Machines, Stacked Autoencoders, Stacked Denoising Autoencoders, Autoencoder, Electrical Engineering, Electronic Engineering, Information Engineering, Elektroteknik och elektronik, F-Mapping, Depp Belief Network
Machine Learning, Deep Learning, Stacked Autoencoder, Restricted Boltzmann Machine, Computer Science, Restricted Boltzmann Machines, Stacked Autoencoders, Stacked Denoising Autoencoders, Autoencoder, Electrical Engineering, Electronic Engineering, Information Engineering, Elektroteknik och elektronik, F-Mapping, Depp Belief Network
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 6 | |
downloads | 8 |