
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractAs illustrated by the 2008 global financial crisis, the financial distress of one country can trigger financial distress in other countries. We examine the problem of identifying such “systemically important” countries (i.e., countries whose financial distress can trigger further distress), which is important for assessing global financial stability. Using data on bilateral financial positions that are split by asset type, we build a multiplex global financial network in which nodes represent countries, edges encode cross-country financial assets of various types, and layers represent asset types. We examine the temporal evolution of a measure of node importance known as MultiRank centrality, and we find that several major European countries decrease in rank and that several major Asian countries increase in rank since 2008. We then develop a multiplex threshold model of financial contagions in which a shock can propagate either within a layer or between layers. We find that the number of systemically important countries can be twice as large when we take into account the heterogeneity of financial exposures (i.e., when using a multiplex network) than in a contagion on an associated aggregate global financial network (i.e., on a monolayer network), as is often examined in other studies. We also study the extent to which buffers can reduce the propagation of financial distress. Our analysis suggests that accounting for both intralayer and interlayer propagation of contagions in a multiplex structure of financial assets is important for understanding interconnected financial systems of countries.
T57-57.97, Financial contagions, Applied mathematics. Quantitative methods, Systemic risk, Multiplex networks
T57-57.97, Financial contagions, Applied mathematics. Quantitative methods, Systemic risk, Multiplex networks
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 23 | |
downloads | 17 |