Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the ACM on Programming Languages
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2020
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2020
Data sources: ZENODO
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

learning graph based heuristics for pointer analysis without handcrafting application specific features

Authors: Minseok Jeon; Myungho Lee; Hakjoo Oh;

learning graph based heuristics for pointer analysis without handcrafting application specific features

Abstract

We present Graphick, a new technique for automatically learning graph-based heuristics for pointer analysis. Striking a balance between precision and scalability of pointer analysis requires designing good analysis heuristics. For example, because applying context sensitivity to all methods in a real-world program is impractical, pointer analysis typically uses a heuristic to employ context sensitivity only when it is necessary. Past research has shown that exploiting the program's graph structure is a promising way of developing cost-effective analysis heuristics, promoting the recent trend of ``graph-based heuristics'' that work on the graph representations of programs obtained from a pre-analysis. Although promising, manually developing such heuristics remains challenging, requiring a great deal of expertise and laborious effort. In this paper, we aim to reduce this burden by learning graph-based heuristics automatically, in particular without hand-crafted application-specific features. To do so, we present a feature language to describe graph structures and an algorithm for learning analysis heuristics within the language. We implemented Graphick on top of Doop and used it to learn graph-based heuristics for object sensitivity and heap abstraction. The evaluation results show that our approach is general and can generate high-quality heuristics. For both instances, the learned heuristics are as competitive as the existing state-of-the-art heuristics designed manually by analysis experts.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback