Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://zenodo.org/r...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/3727...
Part of book or chapter of book
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Part of book or chapter of book . 2020
License: CC BY NC ND
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Part of book or chapter of book . 2020
License: CC BY NC ND
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lucerne Open Repository
Part of book or chapter of book . 2020
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Part of book or chapter of book . 2020
License: CC BY NC ND
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Part of book or chapter of book . 2020
License: CC BY NC ND
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Domain Specific ESA Method for Semantic Text Matching

Authors: Mazzola, Luca; Siegfried, Patrick; Waldis, Andreas; Stalder, Florian; Denzler, Alexander; Kaufmann, Michael;

A Domain Specific ESA Method for Semantic Text Matching

Abstract

An approach to semantic text similarity matching is concept-based characterization of entities and themes that can be automatically extracted from content. This is useful to build an effective recommender system on top of similarity measures and its usage for document retrieval and ranking. In this work, our research goal is to create an expert system for education recommendation, based on skills, capabilities, areas of expertise present in someone's curriculum vitae and personal preferences. This form of semantic text matching challenge needs to take into account all the personal educational experiences (formal, informal, and on-the-job), but also work-related know-how, to create a concept based profile of the person. This will allow a reasoned matching process from CVs and career vision to descriptions of education programs. Taking inspiration from the explicit semantic analysis (ESA), we developed a domain-specific approach to semantically characterize short texts and to compare their content for semantic similarity. Thanks to an enriching and a filtering process, we transform the general purpose German Wikipedia into a domain specific model for our task. The domain is defined also through a German knowledge base or vocabulary of description for educational experiences and for job offers. Initial testing with a small set of documents demonstrated that our approach covers the main requirements and can match semantically similar text content. This is applied in a use case and lead to the implementation of an education recommender system prototype. we developed a domain-specific approach to semantically characterize short texts and to compare their content for semantic similarity. Thanks to an enriching and a filtering process, we transform the general purpose German Wikipedia into a domain specific model for our task. The domain is defined also through a German knowledge base or vocabulary of description for educational experiences and for job offers. Initial testing with a small set of documents demonstrated that our approach covers the main requirements and can match semantically similar text content. This is applied in a use case and lead to the implementation of an education recommender system prototype. we developed a domain-specific approach to semantically characterize short texts and to compare their content for semantic similarity. Thanks to an enriching and a filtering process, we transform the general purpose German Wikipedia into a domain specific model for our task. The domain is defined also through a German knowledge base or vocabulary of description for educational experiences and for job offers. Initial testing with a small set of documents demonstrated that our approach covers the main requirements and can match semantically similar text content. This is applied in a use case and lead to the implementation of an education recommender system prototype. we transform the general purpose German Wikipedia into a domain specific model for our task. The domain is defined also through a German knowledge base or vocabulary of description for educational experiences and for job offers. Initial testing with a small set of documents demonstrated that our approach covers the main requirements and can match semantically similar text content. This is applied in a use case and lead to the implementation of an education recommender system prototype. we transform the general purpose German Wikipedia into a domain specific model for our task. The domain is defined also through a German knowledge base or vocabulary of description for educational experiences and for job offers. Initial testing with a small set of documents demonstrated that our approach covers the main requirements and can match semantically similar text content. This is applied in a use case and lead to the implementation of an education recommender system prototype.

+ ID der Publikation: hslu_76565 + Art des Beitrages: Buchkapitel/Beitrag in Sammelband + Seiten: 25 - 49 + Sprache: Englisch + Letzte Aktualisierung: 2020-03-26 11:33:13

Country
Switzerland
Keywords

Concept extraction, Explicit semantic analysis, Domain-specific semantic model, Document similarity, Semantic text matching

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 494
    download downloads 27
  • 494
    views
    27
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
494
27
Green
Beta
sdg_colorsSDGs:
Related to Research communities