Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2019
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Project deliverable . 2019
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of key processes in bridging the Arctic warming impact and its variation on decadal timescale (D3.2)

Authors: Manzini, Elisa; Ghosh, Rohit; Matei, Daniela; Gastineau, Guillaume; Simon, Amélie; Kwon, Young-Oh; Yang, Shuting;

Identification of key processes in bridging the Arctic warming impact and its variation on decadal timescale (D3.2)

Abstract

Summary: Observational analysis of the Arctic warming impacts: The key driver bridging the winter Arctic warming (1980 to 2014) impact to the Northern Hemisphere has been identified, my means of an advanced multi-variable statistical analysis, to be a tropospheric pathway, linking interannual variability in Arctic warming to the Northern Hemisphere lower atmosphere variability with one month lag. Clearly, the analysis has shown, that the response to the pan-Arctic sea-ice changes does not involve the stratosphere. A covariation of sea-ice variability with Siberian snow cover may be responsible of previously proposed pathways of influences involving the stratosphere. In addition, the analysis suggests that the mechanism of the tropospheric pathway may include the intensification of the Ural anticyclone. Coordinated experiments on Arctic warming impact and its variation on decadal timescale: Warm Arctic Cold Eurasia in winter surface air temperature. Making use of the ensembles of atmospheric model experiment with and without Arctic sea ice forcing it has emerged that the large scale pattern of winter surface air temperature variability is an internal mode of atmospheric variability. At shorter time scales (interannual) the project models capture this internal mode of atmospheric variability. At longer time scales (multi-annual, decadal), however, the models fail to capture the variability/trend of the winter surface air temperature (over 1980-2014). Arctic sea-ice driven variability. Within the Arctic Circle, the sea-ice driven variability explains about 3% of the total variance for sea level pressure and about 23% for surface air temperature in boreal winter at interannual and longer time scales. Regionally, the sea-ice driven variability is 1-1.5 times as large as the variability driven by the other forcings over the Arctic and northern Eurasia. Contrasting Summer and Winter Impact of Arctic sea-ice loss. Large scale features of atmospheric circulation trends over the period 1980-2014 are not reproduced by models, both in winter and summer. While in winter internal atmospheric variability likely plays a role, the difference in summers may point to structural model deficiencies. Multidecadal variability in sea surface temperatures and Arctic warming. The role of variations of the Pacific Ocean surface temperatures on Arctic warming and its impacts many be hard to be identified, given that preliminary results suggest sensitivity to structural model differences.

The Blue-Action project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 727852.

n et al.  (2019) 

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 166
    download downloads 77
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 166
    views
    77
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
166
77
Green