Actions
  • shareshare
  • link
  • cite
  • add
add
auto_awesome_motion View all 11 versions
Publication . Article . Preprint . 2018

Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+:Y2O3

Bernardo Casabone; Julia Benedikter; Thomas Hümmer; Franziska Oehl; Karmel de Oliveira Lima; Theodor W. Hänsch; Alban Ferrier; +3 Authors
Open Access
English
Abstract
We report on the coupling of the emission from a single europium-doped nanocrystal to a fiber-based microcavity under cryogenic conditions. As a first step, we study the sample properties and observe a strong correlation between emission lifetime and brightness, as well as a lifetime reduction for nanocrystals embedded in a polymer film. This is explained by differences in the local density of states. We furthermore quantify the scattering loss of a nanocrystal inside the cavity and use this to deduce the crystal size. Finally, by resonantly coupling the cavity to a selected transition, we perform cavity-enhanced spectroscopy to measure the inhomogeneous linewidth, and detect the fluorescence from an ensemble of few ions in the regime of power broadening. We observe an increased fluorescence rate consistent with Purcell enhancement. The results represent an important step towards the efficient readout of single rare-earth ions with excellent optical and spin coherence properties, which is promising for applications in quantum communication and distributed quantum computation.
5 pages, 3 figures
Subjects by Vocabulary

Dewey Decimal Classification: ddc:530

arXiv: Physics::Optics

Microsoft Academic Graph classification: Ion Local field Physics Spectroscopy Molecular physics Dopant Optical microcavity law.invention law Laser linewidth Nanocrystal Quantum technology

Subjects

Physics, rare earth, quantum technologies, nanoqtehch, single rare earth ion detection, fiber cavity, Purcell enhanced detection, Physics - Optics, Quantum Physics, Optics (physics.optics), Quantum Physics (quant-ph), FOS: Physical sciences, Physik, General Physics and Astronomy

29 references, page 1 of 3

[1] P. Goldner, A. Ferrier, and O. Guillot-Nol, edited by J.-C. G. Bnzli and V. K. Pecharsky, Chapter 267 - Rare Earth-Doped Crystals for Quantum Information Processing, Handbook on the Physics and Chemistry of Rare Earths, Vol. 46 (Elsevier, 2015) pp. 1 { 78.

[2] M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, Nature 517, 177 (2015).

[3] T. Bottger, C. Thiel, R. Cone, and Y. Sun, Physical Review B 79, 115104 (2009).

[4] N. Ohlsson, R. K. Mohan, and S. Kroll, Optics communications 201, 71 (2002).

[5] J. Longdell, M. Sellars, and N. Manson, Physical review letters 93, 130503 (2004).

[6] R. Kolesov, K. Xia, R. Reuter, R. Stohr, A. Zappe, J. Meijer, P. Hemmer, and J. Wrachtrup, Nature communications 3, 1029 (2012).

[7] T. Utikal, E. Eichhammer, L. Petersen, A. Renn, S. Gotzinger, and V. Sandoghdar, Nature communications 5, 3627 (2014).

[8] I. Nakamura, T. Yoshihiro, H. Inagawa, S. Fujiyoshi, and M. Matsushita, Scienti c reports 4, 7364 (2014).

[9] R. Kolesov, K. Xia, R. Reuter, M. Jamali, R. Stohr, T. Inal, P. Siyushev, and J. Wrachtrup, Physical review letters 111, 120502 (2013).

[10] P. Siyushev, K. Xia, R. Reuter, M. Jamali, N. Zhao, N. Yang, C. Duan, N. Kukharchyk, A. Wieck, R. Kolesov, et al., Nature communications 5, 3895 (2014).

Funded by
EC| NanOQTech
Project
NanOQTech
Nanoscale Systems for Optical Quantum Technologies
  • Funder: European Commission (EC)
  • Project Code: 712721
  • Funding stream: H2020 | RIA
Validated by funder
moresidebar