

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
A deep learning approach to anomaly detection in nuclear reactors
A deep learning approach to anomaly detection in nuclear reactors
Presented at IJCNN 2018, this presentation contains the description of a novel deep learning approach to unfold nuclear power reactor signals is proposed. It includes a combination of convolutional neural networks (CNN), denoising autoencoders (DAE) and k-means clustering of representations.
deep learning, convolutional neural networks, clustering trained representations, denoising autoencoders, signal processing, nuclear reactors, unfolding, anomaly detection
deep learning, convolutional neural networks, clustering trained representations, denoising autoencoders, signal processing, nuclear reactors, unfolding, anomaly detection
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 58 download downloads 93 citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average Powered byBIP!
- 58views93downloads



- Funder: European Commission (EC)
- Project Code: 754316
- Funding stream: H2020 | RIA
Presented at IJCNN 2018, this presentation contains the description of a novel deep learning approach to unfold nuclear power reactor signals is proposed. It includes a combination of convolutional neural networks (CNN), denoising autoencoders (DAE) and k-means clustering of representations.