Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS UNIMORE - Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archivio della Ricerca - Università di Pisa
Part of book or chapter of book . Conference object . 2025 . 2024 . Peer-reviewed
License: Springer Nature TDM
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unlearning Vision Transformers Without Retaining Data via Low-Rank Decompositions

Authors: Poppi, Samuele; Sarto, Sara; Cornia, Marcella; Baraldi, Lorenzo; Cucchiara, Rita;

Unlearning Vision Transformers Without Retaining Data via Low-Rank Decompositions

Abstract

The implementation of data protection regulations such as the GDPR and the California Consumer Privacy Act has sparked a growing interest in removing sensitive information from pre-trained models without requiring retraining from scratch, all while maintaining predictive performance on remaining data. Recent studies on machine unlearning for deep neural networks have resulted in different attempts that put constraints on the training procedure and which are limited to small-scale architectures and with poor adaptability to real-world requirements. In this paper, we develop an approach to delete information on a class from a pre-trained model, by injecting a trainable low-rank decomposition into the network parameters, and without requiring access to the original training set. Our approach greatly reduces the number of parameters to train as well as time and memory requirements. This allows a painless application to real-life settings where the entire training set is unavailable, and compliance with the requirement of time-bound deletion. We conduct experiments on various Vision Transformer architectures for class forgetting. Extensive empirical analyses demonstrate that our proposed method is efficient, safe to apply, and effective in removing learned information while maintaining accuracy.

Country
Italy
Keywords

Image Classification; Low-Rank Adaptation; Machine Unlearning; Vision Transformers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Funded by