Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio Istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
ZENODO
Article . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear Bandits with Memory

Authors: Giulia Clerici; Pierre Laforgue; N. Cesa Bianchi;

Linear Bandits with Memory

Abstract

Nonstationary phenomena, such as satiation effects in recommendations, have mostly been modeled using bandits with finitely many arms. However, the richer action space provided by linear bandits is often preferred in practice. In this work, we introduce a novel nonstationary linear bandit model, where current rewards are influenced by the learner’s past actions in a fixed-size window. Our model, which recovers stationary linear bandits as a special case, leverages two parameters: the window size m ≥ 0, and an exponent γ that captures the rotting (γ 0) nature of the phenomenon. When both m and γ are known, we propose and analyze a variant of OFUL which minimizes regret against cyclic policies. By choosing the cycle length so as to trade-off approximation and estimation errors, we then prove a bound of order √d (m + 1) 12 +max{γ,0} T 3/4 (ignoring log factors) on the regret against the optimal sequence of actions, where T is the horizon and d is the dimension of the linear action space. Through a bandit model selection approach, our results are then extended to the case where both m and γ are unknown. Finally, we complement our theoretical results with experiments comparing our approach to natural baselines.

Country
Italy
Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Funded by