Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://pos.sissa.it...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://pos.sissa.it/364/437/p...
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Physics : Conference Series
Article . 2020 . Peer-reviewed
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2018
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2018
License: CC BY
Data sources: ZENODO
https://doi.org/10.22323/1.364...
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

zicos neutrinoless double beta decay experiment using zr 96 with an organic liquid scintillator

Authors: Izumi Ogawa; Ryohei Hayami; Shunsuke Kurosawa; Katsuki Hiraide; Takahiro Gunji; Satoru Tsukada; Shigetaka Moriyama; +1 Authors

zicos neutrinoless double beta decay experiment using zr 96 with an organic liquid scintillator

Abstract

Abstract A liquid scintillator containing a tetrakis(isopropyl acetoacetato)zirconium has been developed for ZICOS experiment. In order to reach the sensitivity T 1 / 2 0 v ≥ 10 27 years, we have to use tone scale of 96Zr and have to reduce 95 % of backgrounds from 208Tl decay, which should be major backgrounds observed around Q-value (3.35 MeV) of 96 Zr neutrinoless double beta decay. According to the Monte Carlo simulation, we demonstrated that new method using the topological information of Cherenkov light could reduce 93 % of 208Tl background with 78 % efficiency for 0vββ signal. For an identification of Cherenkov light, the precise spectral pulse shape from both Cherenkov and scintillation was directly measured by using sub-MeV electrons from 90Sr/90Y beta source. The observed pulse rise and fall (decay) time for Cherenkov light were 0.8 ns and 2.5 ns, respectively. They were actually shorter than those times of scintillation light which were also measured by 1.6 ns and 6.5 ns, respectively. This clear difference of rise time will be used for the pulse shape discrimination in order to select photomultiplier tube which receives Cherenkov lights, and the topological information of Cherenkov light will be used for the reduction of backgrounds from 208Tl decay.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
gold