<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The precise programming of crossbar arrays of unit-cells is crucial for obtaining high matrix-vector-multiplication (MVM) accuracy in analog in-memory computing (AIMC) cores. We propose a radically different approach based on directly minimizing the MVM error using gradient descent with synthetic random input data. Our method significantly reduces the MVM error compared with conventional unit-cell by unit-cell iterative programming. It also eliminates the need for high-resolution analog-to-digital converters (ADCs) to read the small unit-cell conductance during programming. Our method improves the experimental inference accuracy of ResNet-9 implemented on two phase-change memory (PCM)-based AIMC cores by 1.26%.
FOS: Computer and information sciences, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture
FOS: Computer and information sciences, Hardware Architecture (cs.AR), Computer Science - Hardware Architecture
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |