<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The current event cameras are bio-inspired sensors that respond to brightness changes in the scene asynchronously and independently for every pixel, and transmit these changes as ternary event streams. Event cameras have several benefits over conventional digital cameras, such as significantly higher temporal resolution and pixel bandwidth resulting in reduced motion blur, and very high dynamic range. However, they also introduce challenges such as the difficulty of applying existing computer vision algorithms to the output event streams, and the flood of uninformative events in the presence of oscillating light sources. Here we propose a new type of event, the gradient event, which benefits from the same properties as a conventional brightness event, but which is by design much less sensitive to oscillating light sources, and which enables considerably better grayscale frame reconstruction. We show that the gradient event -based video reconstruction outperforms existing state-of-the-art brightness event -based methods by a significant margin, when evaluated on publicly available event-to-video datasets. Our results show how gradient information can be used to significantly improve the acquisition of visual information by an event camera.
8 pages, 6 figures. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 101016734
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |