Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Preprint . 2024
License: CC BY NC ND
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2024
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2024
License: CC BY NC ND
Data sources: Datacite
ZENODO
Preprint . 2024
License: CC BY NC ND
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gradient events: improved acquisition of visual information in event cameras

Authors: Lehtonen, Eero; Komulainen, Tuomo; Paasio, Ari; Laiho, Mika;

Gradient events: improved acquisition of visual information in event cameras

Abstract

The current event cameras are bio-inspired sensors that respond to brightness changes in the scene asynchronously and independently for every pixel, and transmit these changes as ternary event streams. Event cameras have several benefits over conventional digital cameras, such as significantly higher temporal resolution and pixel bandwidth resulting in reduced motion blur, and very high dynamic range. However, they also introduce challenges such as the difficulty of applying existing computer vision algorithms to the output event streams, and the flood of uninformative events in the presence of oscillating light sources. Here we propose a new type of event, the gradient event, which benefits from the same properties as a conventional brightness event, but which is by design much less sensitive to oscillating light sources, and which enables considerably better grayscale frame reconstruction. We show that the gradient event -based video reconstruction outperforms existing state-of-the-art brightness event -based methods by a significant margin, when evaluated on publicly available event-to-video datasets. Our results show how gradient information can be used to significantly improve the acquisition of visual information by an event camera.

8 pages, 6 figures. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 101016734

Keywords

FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Funded by