Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2014
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2014
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

AudioQuilt: {2D} Arrangements of Audio Samples using Metric Learning and Kernelized Sorting

Authors: Fried, Ohad; Jin, Zeyu; Oda, Reid; Finkelstein, Adam;

AudioQuilt: {2D} Arrangements of Audio Samples using Metric Learning and Kernelized Sorting

Abstract

The modern musician enjoys access to a staggering number of audio samples. Composition software can ship with many gigabytes of data, and there are many more to be found online. However, conventional methods for navigating these libraries are still quite rudimentary, and often involve scrolling through alphabetical lists. We present a system for sample exploration that allows audio clips to be sorted according to user taste, and arranged in any desired 2D formation such that similar samples are located near each other. Our method relies on two advances in machine learning. First, metric learning allows the user to shape the audio feature space to match their own preferences. Second, kernelized sorting finds an optimal arrangement for the samples in 2D. We demonstrate our system with two new interfaces for exploring audio samples, and evaluate the technology qualitatively and quantitatively via a pair of user studies.

Powered by OpenAIRE graph
Found an issue? Give us feedback