Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.23919/ecc64...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
ZENODO
Other literature type . 2024
License: CC BY
Data sources: Datacite
ZENODO
Other literature type . 2024
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DNN-Based Visual Perception for High-Precision Motion Control

Authors: Jain, Vibhor; Mohamed, Sajid; Goswami, Dip; Stuijk, Sander;

DNN-Based Visual Perception for High-Precision Motion Control

Abstract

The high-speed, high-precision positioning of objects is a critical component in various industrial manufacturing processes. The semiconductor die packaging, for instance, requires the precise pickup and placement of semiconductor dies on substrates. This is done by coupling the silicon wafer which contains thousands of semiconductor dies, with a motion control platform equipped with linear motors and encoders. The motion controller relies on linear motors and encoders to accurately position the silicon wafer at reference positions, which are determined through the relative positions of the dies on the wafer. However, the challenge arises when neighboring dies get misaligned during the pickup process, making it impossible to read the position of the die through encoders. This paper addresses the challenge of precise alignment in high-speed, micro-scale manufacturing environments, where traditional methods struggle due to the disconnect between the point-of-interest (dies) and point-of-control (motor/silicon wafer). To overcome these challenges, we propose a Deep Neural Network (DNN) based perception that allows for robust sensing of die positions. We also propose a fusion mechanism to incorporate this vision feedback with the encoder to accurately detect the misalignment and compensate for it before periodic pickups of the dies. We use a software-in-the-loop validation framework to demonstrate that our proposed method could successfully eliminate the misalignment before the pickup in the range under consideration.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Funded by
Related to Research communities