<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
At the core of Artificial Intelligence, two major pathways of knowledge extraction and representation have been the cornerstone for many decades: Deductive Learning, based on sets of "rules" from Predicate Calculus and Horn clauses that represent the domain experts' knowledge; and Inductive Learning, based on 'generalization by examples' by more or less 'black box' algorithms.In this third lecture, the Deductive approach is explored via the notion of Explanation-Based Learning (EBL), which is prevalent in Logic Programming and Expert Systems, implemented by languages like Prolog and LISP. Similarly, the Inductive approach is explained via the notion of Analytical Learning, which is prevalent in the last few decades in Pattern Recognition and Machine Learning, more commonly manifested as Neural Networks, Genetic Algorithms, Deep Learning, etc. Keywords: Machine Learning, Data Analytics, AI, Artificial Intelligence, lectureVideo: https://youtu.be/aNyoGAaa5LQ
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |