Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Thesis . Other literature type . 2020
License: CC BY
Data sources: ZENODO; Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Thesis . Other literature type . 2020
License: CC BY
Data sources: Datacite; ZENODO
ZENODO
Thesis . 2020
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aplicación de técnicas de aprendizaje de maquinas al problema de la clasificación de cerámica arqueológica. Un estudio de caso

Authors: Sanchez-Gomez, Daniel;

Aplicación de técnicas de aprendizaje de maquinas al problema de la clasificación de cerámica arqueológica. Un estudio de caso

Abstract

Este trabajo explora la utilidad de la aplicación de un enfoque de adquisición de conocimientos al problema de la clasificación de objetos arqueológicos, particularmente fragmentos cerámicos; uno de los materiales más abundantes en el registro arqueológico y cuya gestión implica mayor costo en términos de tiempo y recursos en el marco de cualquier investigación. Para ello se construyó un modelo tipológico implementando diversas herramientas de los principales paradigmas del aprendizaje de máquinas (aprendizaje no-supervisado y supervisado). El modelo fue implementado sobre un conjunto de datos de cerámicas arqueológicas del caribe colombiano. Los resultados revelan que el modelo funciona mejor cuando se cuenta con tipologías de referencia bien definidas y criterios clasificatorios estandarizados que puedan servir para entrenar algoritmos en tareas de aprendizaje supervisado. Por el contrario, una de sus mayores debilidades es su poca utilidad comparativa. Esto no solo se debe a las herramientas utilizadas sino a la calidad de la información disponible en el contexto de estudio

This work explores a knowledge acquisition and data analysis approach to the problem of archaeological classification. Particularly classification of pottery sherds; one of the most abundant and challenging elements of the archaeological record. To this end, a machine learning- based typology was developed applying different classification schemas; starting with an unstructured dataset (non-supervised paradigm) until the training of different supervised classifiers to automate the process of classifying new instances. This process was applied to a dataset from the Caribbean coast of Colombia to evaluate the accuracy and performance of different algorithms. The results reveal that, the model Works better with supervised classification tasks with consistent typologies that can work as training models. Also, the model shows a decent performance working with a categorical multivariate dataset. Conversely one of his major weaknesses is his lack of comparative utility. That's not only because the tools and procedures that was implemented but for the quality of the data used.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green