Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
ZENODO
Other literature type . 2023
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy-Efficient BLAS L1 Routines for FPGA-Supported HPC Applications.

Authors: Theodoropoulos, Dimitris; Pekridis, George; Miliadis, Panagiotis; Pnevmatikatos, Dionisios;

Energy-Efficient BLAS L1 Routines for FPGA-Supported HPC Applications.

Abstract

Vector-based calculations dominate computations in scientific and industrial HPC software. However, up to now there are limited options for mapping them quickly and efficiently on FPGA-supported systems. This work presents a first set of FPGA kernels for mapping a large set of the BLAS L1 routine set on HPC FPGAs. All kernels retain exactly the same interface with respect to their software counterpart routine, whereas they can be configured in terms of internal computing engines. Results show that our kernels can achieve a speed up and performance-per-Watt ratio of up to 7 and 45 respectively, compared to Intel’s MKL routines when executed on server-class machines.

Powered by OpenAIRE graph
Found an issue? Give us feedback