<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Jazz pianists often uniquely interpret jazz standards. Passages from these interpretations can be viewed as sections of variation. We manually extracted such variations from solo jazz piano performances. The JAZZVAR dataset is a collection of 502 pairs of Variation and Original MIDI segments. Each Variation in the dataset is accompanied by a corresponding Original segment containing the melody and chords from the original jazz standard. Our approach differs from many existing jazz datasets in the music information retrieval (MIR) community, which often focus on improvisation sections within jazz performances. In this paper, we outline the curation process for obtaining and sorting the repertoire, the pipeline for creating the Original and Variation pairs, and our analysis of the dataset. We also introduce a new generative music task, Music Overpainting, and present a baseline Transformer model trained on the JAZZVAR dataset for this task. Other potential applications of our dataset include expressive performance analysis and performer identification.
Pre-print accepted for publication at CMMR2023, 12 pages, 4 figures
FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, Machine Learning (cs.LG)
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doi_dedup___::a90efe33c31e17f93a5303d7827fe8cd&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doi_dedup___::a90efe33c31e17f93a5303d7827fe8cd&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=openaire____::f1443a0d22c589968149bd4d712cd0e9&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=openaire____::f1443a0d22c589968149bd4d712cd0e9&type=result"></script>');
-->
</script>