

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Query and Keyframe Representations for Ad-hoc Video Search
This paper presents a fully-automatic method that combines video concept detection and textual query analysis in order to solve the problem of ad-hoc video search. We present a set of NLP steps that cleverly analyse different parts of the query in order to convert it to related semantic concepts, we propose a new method for transforming concept-based keyframe and query representations into a common semantic embedding space, and we show that our proposed combination of concept-based representations with their corresponding semantic embeddings results to improved video search accuracy. Our experiments in the TRECVID AVS 2016 and the Video Search 2008 datasets show the effectiveness of the proposed method compared to other similar approaches.
- Queen Mary University of London United Kingdom
- Information Technology Institute Egypt
Microsoft Academic Graph classification: Information retrieval Video tracking TRECVID Computer science Set (abstract data type) Concept search Query expansion Embedding Space (commercial competition) Web search query
Video search, Zero-shot learning, Visual analysis, video concept detection, textual query analysis
Video search, Zero-shot learning, Visual analysis, video concept detection, textual query analysis
Microsoft Academic Graph classification: Information retrieval Video tracking TRECVID Computer science Set (abstract data type) Concept search Query expansion Embedding Space (commercial competition) Web search query
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 249 download downloads 162 citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average Powered byBIP!
- 249views162downloads



- Funder: European Commission (EC)
- Project Code: 693092
- Funding stream: H2020 | RIA
- Funder: European Commission (EC)
- Project Code: 687786
- Funding stream: H2020 | IA
This paper presents a fully-automatic method that combines video concept detection and textual query analysis in order to solve the problem of ad-hoc video search. We present a set of NLP steps that cleverly analyse different parts of the query in order to convert it to related semantic concepts, we propose a new method for transforming concept-based keyframe and query representations into a common semantic embedding space, and we show that our proposed combination of concept-based representations with their corresponding semantic embeddings results to improved video search accuracy. Our experiments in the TRECVID AVS 2016 and the Video Search 2008 datasets show the effectiveness of the proposed method compared to other similar approaches.