Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2011
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2011
License: CC BY
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

a machine learning toolbox for musician computer interaction

Authors: Gillian, Nicholas; Knapp, Benjamin; O'Modhrain, Sile;

a machine learning toolbox for musician computer interaction

Abstract

This paper presents the SARC EyesWeb Catalog, (SEC),a machine learning toolbox that has been specifically developed for musician-computer interaction. The SEC features a large number of machine learning algorithms that can be used in real-time to recognise static postures, perform regression and classify multivariate temporal gestures. The algorithms within the toolbox have been designed to work with any N -dimensional signal and can be quickly trained with a small number of training examples. We also provide the motivation for the algorithms used for the recognition of musical gestures to achieve a low intra-personal generalisation error, as opposed to the inter-personal generalisation error that is more common in other areas of human-computer interaction.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback