publication . Other literature type . Article . 2016

A new X-ray-transparent flow-through reaction cell for a μ-CT-based concomitant surveillance of the reaction progress of hydrothermal mineral–fluid interactions

Wolf-Achim Kahl; Christian T. Hansen; Wolfgang Bach;
Open Access English
  • Published: 22 Apr 2016
Abstract
Abstract. A new flow-through reaction cell consisting of an X-ray-transparent semicrystalline thermoplastic has been developed for percolation experiments. Core holder, tubing and all confining parts are constructed using PEEK (polyetheretherketone) to allow concomitant surveillance of the reaction progress by X-ray microtomography (μ-CT). With this cell setup, corrosive or oversaturated fluids can be forced through rock cores (up to ∅ 19 mm) or powders at pressures up to 100 bar and temperatures up to 200 °C. The reaction progress of the experiment can be monitored without dismantling the sample from the core holder. The combination of this flow-through reactio...
Persistent Identifiers
Subjects
free text keywords: Paleontology, Stratigraphy, Earth-Surface Processes, Geochemistry and Petrology, Geology, Geophysics, Soil Science, lcsh:Geology, lcsh:QE1-996.5, lcsh:Stratigraphy, lcsh:QE640-699, Thermoplastic, chemistry.chemical_classification, chemistry, Crystallinity, Percolation, Hydrothermal circulation, Crystal, Composite material, Peek, Muscovite, engineering.material, engineering, Geology, Mineralogy, Gypsum
Communities
Communities with gateway
OpenAIRE Connect image
20 references, page 1 of 2

Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoise, E., and Gibert, B.: Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites, Environ. Sci. Technol., 23, 1226-1231, doi:10.1021/es8018429, 2009.

Berg, S., Ott, H., Klapp, S. A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O., Kersten, M., Irvine, S., and Stampanoni, M.: Real-time 3-D imaging of Haines jumps in porous media flow, P. Natl. Acad. Sci. USA, 110, 3755-3759, doi:10.1073/pnas.1221373110, 2013.

Bultreys, T., Boone, M., Boone, M., De Schryver, T., Masschaele, B., Van Hoorebeke, L., and Cnudde, V.: Fast laboratory-based micro-computed tomography for pore-scale research: illustrative experiments and perspectives on the future, Adv. Water Resour., 1-11, doi:10.1016/j.advwatres.2015.05.012, 2015.

Burlion, N., Bernard, D., and Chen, D.: X-ray microtomography: Application to microstructure analysis of a cementitious material during leaching process, Cement Concrete Res., 36, 346-357, doi:10.1016/j.cemconres.2005.04.008, 2006.

Feldkamp, L. A., Davis, L. D., and Kress, J. W.: Practical conebeam algorithm, J. Opt. Soc. Am. A, 1, 612-619, doi:10.1364/JOSAA.1.000612, 1984.

Fusseis, F., Steeb, H., Xiao, X., Zhu, W.-L., Butler, I. B., Elphick, S., and Mäder, U.: A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions, J. Synchrotron Radiat., 21, 251- 253, 2014.

Flukiger, F. and Bernard, D.: A new numerical model for pore scale dissolution of calcite due to CO2 saturated water flow in 3-D realistic geometry: Principles and first results, Chem. Geol., 265, 171-180, doi:10.1016/j.chemgeo.2009.05.004, 2009.

Gouze, P. and Luquot, L.: X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution, J. Contam. Hydrol., 120-121, 45-55, doi:10.1016/j.jconhyd.2010.07.004, 2011.

Kühn, M.: Modelling Feedback of Chemical Reactions on Flow Fields in Hydrothermal Systems, Surv. Geophys., 30, 233-251, doi:10.1007/s10712-009-9055-5, 2009.

Lebedev, M.: A low cost pressure cell for micro computer tomography, 3rd International Workshop on Rock Physics, Perth, 13th17th, 2015.

Myers, G. R., Kingston, A. M., Varslot, T. K., Turner, M. L., and Sheppard, A. P.: Dynamic X-ray micro-tomography for real time imaging of drainage and imbibition processes at the pore scale, International symposium of the society of core analysts, Society of Core Analysts, 2011.

Noiriel, C., Bernard, D., Gouze, P., and Thibault, X.: Hydraulic properties and microgeometry evolution in the course of limestone dissolution by CO2-enriched water, Oil Gas Sci. Technol., 60, 177-192, 2005. [OpenAIRE]

Noiriel, C., Luquot, L., Made, B., Raimbault, L., Gouze, P., and van der Lee, J.: Changes in reactive surface area during limestone dissolution: An experimental and modelling study, Chem. Geol., 265, 160-170, doi:10.1016/j.chemgeo.2009.01.032, 2009.

Noiriel, C., Steefel, C. I., Yang, L., and Ajo-Franklin, J.: Upscaling calcium carbonate precipitation rates from pore to continuum scale, Chem. Geol., 318-319, 60-74, doi:10.1016/j.chemgeo.2012.05.014, 2012. [OpenAIRE]

Øren, P.-E. and Bakke, S.: Reconstruction of Berea sandstone and pore-scale modelling of wettability effects, J. Petrol. Sci. Eng., 39, 177-199, doi:10.1016/S0920-4105(03)00062-7, 2003.

20 references, page 1 of 2
Any information missing or wrong?Report an Issue