Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OpenAIREarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
OpenAIRE
Preprint . 2022
Data sources: OpenAIRE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5194/egusph...
Article . Preprint . Other literature type . 2022 . Peer-reviewed
License: CC BY
Copernicus Publications
Other literature type . 2024
versions View all 9 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linking satellites to genes with machine learning to estimate major phytoplankton groups from space

Authors: El Hourany, Roy; Pierella Karlusich, Juan; Zinger, Lucie; Loisel, Hubert; Levy, Marina; Bowler, Chris;

Linking satellites to genes with machine learning to estimate major phytoplankton groups from space

Abstract

Abstract. Ocean color remote sensing offers two decades-long time series of information on phytoplankton abundance. However, determining the structure of the phytoplankton community from this signal is not straightforward, and many uncertainties remain to be evaluated, despite multiple intercomparison efforts of the different available algorithms. Here, we use remote sensing and machine learning to infer the abundance of seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. Our dataset is to our knowledge the most comprehensive and complete, available to describe phytoplankton community structure at a global scale using a molecular marker that defines relative abundances of all phytoplankton groups simultaneously. The methodology shows satisfying performances to provide robust estimates of phytoplankton groups using satellite data, with few limitations regarding the global generalization of the method. Furthermore, this new satellite-based methodology allows a valuable global intercomparison with the pigment-based approach used in in-situ and satellite data to identify phytoplankton groups. Nevertheless, these datasets show different, yet coherent information on the phytoplankton, valuable for the understanding of community structure. This makes remote sensing observations excellent tools to collect Essential Biodiversity Variables and provide a foundation for developing marine biodiversity forecasts.

Country
France
Keywords

570, 550, [SDE]Environmental Sciences

1 Data sources, page 1 of 1
  • more_vert
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid