Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2025
License: CC BY
Data sources: ZENODO
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Online SLA Decomposition: Enabling Real-Time Adaptation to Evolving Network Systems

Authors: Hsu, Cyril Shih-Huan; De Vleeschauwer, Danny; Papagianni, Chrysa; Grosso, Paola;

Online SLA Decomposition: Enabling Real-Time Adaptation to Evolving Network Systems

Abstract

When a network slice spans multiple technology domains, it is crucial for each domain to uphold the End-to-End (E2E) Service Level Agreement (SLA) associated with the slice. Consequently, the E2E SLA must be properly decomposed into partial SLAs that are assigned to each domain involved. In a network slice management system with a two-level architecture, comprising an E2E service orchestrator and local domain controllers, we consider that the orchestrator has access only to historical data regarding the responses of local controllers to previous requests, and this information is used to construct a risk model for each domain. In this study, we extend our previous work by investigating the dynamic nature of real-world systems and introducing an online learning-decomposition framework to tackle the dynamicity. We propose a framework that continuously updates the risk models based on the most recent feedback. This approach leverages key components such as online gradient descent and FIFO memory buffers, which enhance the stability and robustness of the overall process. Our empirical study on an analytic model-based simulator demonstrates that the proposed framework outperforms the state-of-the-art static approach, delivering more accurate and resilient SLA decomposition under varying conditions and data limitations. Furthermore, we provide a comprehensive complexity analysis of the proposed solution.

The paper has been accepted for publication at EuCNC & 6G Summit 2025

Related Organizations
Keywords

Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded by
Related to Research communities