Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genetics and Molecul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics and Molecular Research
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study of the obp5 gene in Apis mellifera ligustica and Apis cerana cerana

Authors: Y X Luo; X F Zhang; X N Zeng; W Z Huang; Qin Liang; H X Zhao; H S Chen;

Study of the obp5 gene in Apis mellifera ligustica and Apis cerana cerana

Abstract

Apis mellifera ligustica and A. cerana cerana exhibit differences in olfactory sensitivity to odors from nectariferous plants and diseased broods. It is presumed that the differences in odorant-binding proteins (OBPs) between these 2 species contribute to their olfactory sensitivity. We compared the sequences, temporal expression pattern, and binding properties of the 2 OBP-encoding genes. We cloned the Amobp5 and Acobp5 genes. Among the ligands tested, phenethyl acetate was the most variable, with AcOBP5 showing high affinity and AmOBP5 having no apparent affinity for this ligand. While AmOBP5 had high affinity to both benzyl alcohol and 2-phenylethanol, the binding affinity of AcOBP5 to these compounds was moderate. However, the fluorescence intensity of these compounds was not decreased below 50%; thus, the dissociation constants could not be calculated. The Amobp5 gene showed significantly higher expression in 10- and 15-day-old workers than in other stages, while the Acobp5 gene had the highest expression in 30-day-old workers. Both the Amobp5 and Acobp5 genes had the lowest expression level in 1-day-old workers. These results suggest that the binding properties and temporal expression patterns of the obp5 genes in A. mellifera and A. cerana play a critical role in the olfactory sensitivity of workers.

Related Organizations
Keywords

Smell, Animals, Insect Proteins, Amino Acid Sequence, Bees, Receptors, Odorant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average
gold