Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Zeitschrift für Anal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
Zeitschrift für Analysis und ihre Anwendungen
Article . 2000 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On a Class of Parabolic Integro-Differential Equations

On a class of parabolic integro-differential equations
Authors: W. Kohl;

On a Class of Parabolic Integro-Differential Equations

Abstract

Existence and uniqueness results for the integro-differential equation u_1(x, t) - au_{xx} (x, t) = c(x, t)u(x, t) + \int^1_0 k(s, x)h(s, t, u(s, t)) ds + f(x, t)\\\ ((x,t) \in Q) subject to the boundary condition u(x,t) = \varphi (x,t)\\\ ((x, t) \in R) and, especially, for the linear case h(s,t,u) = u are given. To this end, this equation is written as operator equation in a suitable Hölder space. The main tools are the calculation of the spectral radius in the linear case, and fixed point principles in the nonlinear case.

Keywords

parabolic boundary, Dirichlet boundary condition, one-dimensional heat operator, Hölder spaces, Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.), Parabolic equations and parabolic systems, Integro-partial differential equations, Fixed-point theorems, Special properties of functions of several variables, Hölder conditions, etc., parabolic integro-differential equations, multiplication operator, Integro-differential operators

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold