
pmid: 20657179
The GTPase super-family comprises a variety of G proteins found in all three domains of life. Although they are participating in completely different processes like signal transduction, protein biosynthesis and regulation of cell proliferation, they all share a highly conserved G domain and use a common mechanism for GTP hydrolysis. Exact timing in hydrolyzing the bound GTP serves as a molecular switch to initiate diverse cellular reactions. Classical GTPases depend on external proteins to fire GTP hydrolysis (GAPs), and following the GTPase reaction to exchange GDP for GTP (GEFs), converting the GTPase into the active state again. In recent years it became clear that there are many GTPases that do not follow this classical switch mode scheme. Certain ribosome-associated GTPases are not reliant on other GEF proteins to exchange GDP for GTP. Furthermore many of these G proteins are not activated by external GAPs, but by evolutionarily ancient molecules, namely by RNA.
Bacteria, GTP-Binding Proteins, GTP Phosphohydrolase-Linked Elongation Factors, Humans, RNA, GTP Phosphohydrolase Activators, Ribosomes, GTP Phosphohydrolases
Bacteria, GTP-Binding Proteins, GTP Phosphohydrolase-Linked Elongation Factors, Humans, RNA, GTP Phosphohydrolase Activators, Ribosomes, GTP Phosphohydrolases
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
